1887

Abstract

The human genome comprises 8 % endogenous retroviruses (ERVs), the majority of which are defective due to deleterious mutations. Nonetheless, transcripts of ERVs are found in most tissues, and these transcripts could either be reverse transcribed to generate ssDNA or expressed to generate proteins. Thus, the expression of ERVs could produce nucleic acids or proteins with viral signatures, much like the pathogen-associated molecular patterns of exogenous viruses, which would enable them to be detected by the innate immune system. The activation of some pattern recognition receptors (PRRs) in response to ERVs has been described in mice and in the context of human autoimmune diseases. Here, we review the evidence for detection of ERVs by PRRs and the resultant activation of innate immune signalling. This is an emerging area of research within the field of innate antiviral immunity, showing how ERVs could initiate immune signalling pathways and might have implications for numerous inflammatory diseases.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000017
2015-06-01
2022-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/6/1207.html?itemId=/content/journal/jgv/10.1099/jgv.0.000017&mimeType=html&fmt=ahah

References

  1. Ablasser A., Hemmerling I., Schmid-Burgk J. L., Behrendt R., Roers A., Hornung V. 2014; TREX1 deficiency triggers cell-autonomous immunity in a cGAS-dependent manner. J Immunol 192:5993–5997 [View Article][PubMed]
    [Google Scholar]
  2. Akers J. C., Gonda D., Kim R., Carter B. S., Chen C. C. 2013; Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol 113:1–11 [View Article][PubMed]
    [Google Scholar]
  3. Ariza M.-E., Williams M. V. 2011; A human endogenous retrovirus K dUTPase triggers a TH1, TH17 cytokine response: does it have a role in psoriasis?. J Invest Dermatol 131:2419–2427 [View Article][PubMed]
    [Google Scholar]
  4. Aswad A., Katzourakis A. 2012; Paleovirology and virally derived immunity. Trends Ecol Evol 27:627–636 [View Article][PubMed]
    [Google Scholar]
  5. Bannert N., Kurth R. 2006; The evolutionary dynamics of human endogenous retroviral families. Annu Rev Genomics Hum Genet 7:149–173 [View Article][PubMed]
    [Google Scholar]
  6. Barrat F. J., Meeker T., Gregorio J., Chan J. H., Uematsu S., Akira S., Chang B., Duramad O., Coffman R. L. 2005; Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 202:1131–1139 [View Article][PubMed]
    [Google Scholar]
  7. Baudino L., Yoshinobu K., Dunand-Sauthier I., Evans L. H., Izui S. 2010; TLR-mediated up-regulation of serum retroviral gp70 is controlled by the Sgp loci of lupus-prone mice. J Autoimmun 35:153–159 [View Article][PubMed]
    [Google Scholar]
  8. Beck-Engeser G. B., Eilat D., Wabl M. 2011; An autoimmune disease prevented by anti-retroviral drugs. Retrovirology 8:91 [View Article][PubMed]
    [Google Scholar]
  9. Berg R. K., Melchjorsen J., Rintahaka J., Diget E., Søby S., Horan K. A., Gorelick R. J., Matikainen S., Larsen C. S. et al. 2012; Genomic HIV RNA induces innate immune responses through RIG-I-dependent sensing of secondary-structured RNA. PLoS ONE 7:e29291 [View Article][PubMed]
    [Google Scholar]
  10. Best S., Le Tissier P., Towers G., Stoye J. P. 1996; Positional cloning of the mouse retrovirus restriction gene Fv1 . Nature 382:826–829 [View Article][PubMed]
    [Google Scholar]
  11. Bieda K., Hoffmann A., Boller K. 2001; Phenotypic heterogeneity of human endogenous retrovirus particles produced by teratocarcinoma cell lines. J Gen Virol 82:591–596[PubMed] [CrossRef]
    [Google Scholar]
  12. Bonner T. I., O’Connell C., Cohen M. 1982; Cloned endogenous retroviral sequences from human DNA. Proc Natl Acad Sci U S A 79:4709–4713 [View Article][PubMed]
    [Google Scholar]
  13. Browne E. P. 2011; Toll-like receptor 7 controls the anti-retroviral germinal center response. PLoS Pathog 7:e1002293 [View Article][PubMed]
    [Google Scholar]
  14. Browne E. P. 2013; Toll-like receptor 7 inhibits early acute retroviral infection through rapid lymphocyte responses. J Virol 87:7357–7366 [View Article][PubMed]
    [Google Scholar]
  15. Childs K. S., Randall R. E., Goodbourn S. 2013; LGP2 plays a critical role in sensitizing mda-5 to activation by double-stranded RNA. PLoS ONE 8:e64202 [View Article][PubMed]
    [Google Scholar]
  16. Coffin J. M. 1979; Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J Gen Virol 42:1–26 [View Article][PubMed]
    [Google Scholar]
  17. Cohen M., Kato N., Larsson E. 1988; ERV3 human endogenous provirus mRNAs are expressed in normal and malignant tissues and cells, but not in choriocarcinoma tumor cells. J Cell Biochem 36:121–128 [View Article][PubMed]
    [Google Scholar]
  18. de Parseval N., Lazar V., Casella J.-F., Benit L., Heidmann T. 2003; Survey of human genes of retroviral origin: identification and transcriptome of the genes with coding capacity for complete envelope proteins. J Virol 77:10414–10422 [View Article][PubMed]
    [Google Scholar]
  19. Denner J. 2014; The transmembrane proteins contribute to immunodeficiencies induced by HIV-1 and other retroviruses. AIDS 28:1081–1090[PubMed] [CrossRef]
    [Google Scholar]
  20. Dewannieux M., Harper F., Richaud A., Letzelter C., Ribet D., Pierron G., Heidmann T. 2006; Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res 16:1548–1556 [View Article][PubMed]
    [Google Scholar]
  21. Dupressoir A., Lavialle C., Heidmann T. 2012; From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33:663–671 [View Article][PubMed]
    [Google Scholar]
  22. Eckard S. C., Rice G. I., Fabre A., Badens C., Gray E. E., Hartley J. L., Crow Y. J., Stetson D. B. 2014; The SKIV2L RNA exosome limits activation of the RIG-I-like receptors. Nat Immunol 15:839–845 [View Article][PubMed]
    [Google Scholar]
  23. Esnault C., Heidmann O., Delebecque F., Dewannieux M., Ribet D., Hance A. J., Heidmann T., Schwartz O. 2005; APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses. Nature 433:430–433 [View Article][PubMed]
    [Google Scholar]
  24. Esnault C., Millet J., Schwartz O., Heidmann T. 2006; Dual inhibitory effects of APOBEC family proteins on retrotransposition of mammalian endogenous retroviruses. Nucleic Acids Res 34:1522–1531 [View Article][PubMed]
    [Google Scholar]
  25. Gall A., Treuting P., Elkon K. B., Loo Y.-M., Gale M. Jr, Barber G. N., Stetson D. B. 2012; Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36:120–131 [View Article][PubMed]
    [Google Scholar]
  26. Gao D., Wu J., Wu Y.-T., Du F., Aroh C., Yan N., Sun L., Chen Z. J. 2013; Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341:903–906 [View Article][PubMed]
    [Google Scholar]
  27. Gürtler C., Bowie A. G. 2013; Innate immune detection of microbial nucleic acids. Trends Microbiol 21:413–420 [View Article][PubMed]
    [Google Scholar]
  28. Harzmann R., Löwer J., Löwer R., Bichler K. H., Kurth R. 1982; Synthesis of retrovirus-like particles in testicular teratocarcinomas. J Urol 128:1055–1059[PubMed]
    [Google Scholar]
  29. Hiscott J. 2007; Triggering the innate antiviral response through IRF-3 activation. J Biol Chem 282:15325–15329 [View Article][PubMed]
    [Google Scholar]
  30. Hornung V., Ablasser A., Charrel-Dennis M., Bauernfeind F., Horvath G., Caffrey D. R., Latz E., Fitzgerald K. A. 2009; AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518 [View Article][PubMed]
    [Google Scholar]
  31. Jakobsen M. R., Bak R. O., Andersen A., Berg R. K., Jensen S. B., Jin T., Laustsen A., Hansen K., Ostergaard L. et al. 2013; IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proc Natl Acad Sci U S A 110:E4571–E4580 [View Article][PubMed]
    [Google Scholar]
  32. Johnston J. B., Silva C., Holden J., Warren K. G., Clark A. W., Power C. 2001; Monocyte activation and differentiation augment human endogenous retrovirus expression: implications for inflammatory brain diseases. Ann Neurol 50:434–442 [View Article][PubMed]
    [Google Scholar]
  33. Kaiser S. M., Malik H. S., Emerman M. 2007; Restriction of an extinct retrovirus by the human TRIM5α antiviral protein. Science 316:1756–1758 [View Article][PubMed]
    [Google Scholar]
  34. Kalter S. S., Helmke R. J., Panigel M., Heberling R. L., Felsburg P. J., Axelrod L. R. 1973; Observations of apparent C-type particles in baboon (Papio cynocephalus) placentas. Science 179:1332–1333 [View Article][PubMed]
    [Google Scholar]
  35. Kassiotis G. 2014; Endogenous retroviruses and the development of cancer. J Immunol 192:1343–1349 [View Article][PubMed]
    [Google Scholar]
  36. Kato N., Pfeifer-Ohlsson S., Kato M., Larsson E., Rydnert J., Ohlsson R., Cohen M. 1987; Tissue-specific expression of human provirus ERV3 mRNA in human placenta: two of the three ERV3 mRNAs contain human cellular sequences. J Virol 61:2182–2191[PubMed]
    [Google Scholar]
  37. Kato H., Takeuchi O., Mikamo-Satoh E., Hirai R., Kawai T., Matsushita K., Hiiragi A., Dermody T. S., Fujita T., Akira S. 2008; Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205:1601–1610 [View Article][PubMed]
    [Google Scholar]
  38. Katzourakis A., Tristem M. 2005; Phylogeny of human endogenous and exogenous retroviruses. In Retroviruses and Primate Genome Evolution pp. 186–203 Edited by Sverdlov. E. Austin, TX: Landes Bioscience;
    [Google Scholar]
  39. Kawai T., Akira S. 2009; The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21:317–337 [View Article][PubMed]
    [Google Scholar]
  40. Koh Y. T., Scatizzi J. C., Gahan J. D., Lawson B. R., Baccala R., Pollard K. M., Beutler B. A., Theofilopoulos A. N., Kono D. H. 2013; Role of nucleic acid-sensing TLRs in diverse autoantibody specificities and anti-nuclear antibody-producing B cells. J Immunol 190:4982–4990 [View Article][PubMed]
    [Google Scholar]
  41. Lander E. S., Linton L. M., Birren B., Nusbaum C., Zody M. C., Baldwin J., Devon K., Dewar K., Doyle M. et al. 2001; Initial sequencing and analysis of the human genome. Nature 409:860–921 [View Article][PubMed]
    [Google Scholar]
  42. Lavie L., Kitova M., Maldener E., Meese E., Mayer J. 2005; CpG methylation directly regulates transcriptional activity of the human endogenous retrovirus family HERV-K(HML-2). J Virol 79:876–883 [View Article][PubMed]
    [Google Scholar]
  43. Lee Y. N., Bieniasz P. D. 2007; Reconstitution of an infectious human endogenous retrovirus. PLoS Pathog 3:e10 [View Article][PubMed]
    [Google Scholar]
  44. Lee Y. N., Malim M. H., Bieniasz P. D. 2008; Hypermutation of an ancient human retrovirus by APOBEC3G. J Virol 82:8762–8770 [View Article][PubMed]
    [Google Scholar]
  45. Lester S. N., Li K. 2014; Toll-like receptors in antiviral innate immunity. J Mol Biol 426:1246–1264 [View Article][PubMed]
    [Google Scholar]
  46. Loo Y.-M., Gale M. Jr 2011; Immune signaling by RIG-I-like receptors. Immunity 34:680–692 [View Article][PubMed]
    [Google Scholar]
  47. Lu X., Sachs F., Ramsay L., Jacques P.-É., Göke J., Bourque G., Ng H.-H. 2014; The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat Struct Mol Biol 21:423–425 [View Article][PubMed]
    [Google Scholar]
  48. Magiorkinis G., Gifford R. J., Katzourakis A., De Ranter J., Belshaw R. 2012; Env-less endogenous retroviruses are genomic superspreaders. Proc Natl Acad Sci U S A 109:7385–7390 [View Article][PubMed]
    [Google Scholar]
  49. Mameli G., Astone V., Khalili K., Serra C., Sawaya B. E., Dolei A. 2007; Regulation of the syncytin-1 promoter in human astrocytes by multiple sclerosis-related cytokines. Virology 362:120–130 [View Article][PubMed]
    [Google Scholar]
  50. Mangeney M., de Parseval N., Thomas G., Heidmann T. 2001; The full-length envelope of an HERV-H human endogenous retrovirus has immunosuppressive properties. J Gen Virol 82:2515–2518[PubMed] [CrossRef]
    [Google Scholar]
  51. Mangeney M., Renard M., Schlecht-Louf G., Bouallaga I., Heidmann O., Letzelter C., Richaud A., Ducos B., Heidmann T. 2007; Placental syncytins: genetic disjunction between the fusogenic and immunosuppressive activity of retroviral envelope proteins. Proc Natl Acad Sci U S A 104:20534–20539 [View Article][PubMed]
    [Google Scholar]
  52. Manghera M., Douville R. N. 2013; Endogenous retrovirus-K promoter: a landing strip for inflammatory transcription factors?. Retrovirology 10:16 [View Article][PubMed]
    [Google Scholar]
  53. Marchi E., Kanapin A., Magiorkinis G., Belshaw R. 2014; Unfixed endogenous retroviral insertions in the human population. J Virol 88:9529–9537 [View Article][PubMed]
    [Google Scholar]
  54. Medstrand P., Lindeskog M., Blomberg J. 1992; Expression of human endogenous retroviral sequences in peripheral blood mononuclear cells of healthy individuals. J Gen Virol 73:2463–2466 [View Article][PubMed]
    [Google Scholar]
  55. Michaud H.-A., de Mulder M., SenGupta D., Deeks S. G., Martin J. N., Pilcher C. D., Hecht F. M., Sacha J. B., Nixon D. F. 2014; Trans-activation, post-transcriptional maturation, and induction of antibodies to HERV-K (HML-2) envelope transmembrane protein in HIV-1 infection. Retrovirology 11:10 [View Article][PubMed]
    [Google Scholar]
  56. Morozov V. A., Dao Thi V. L., Denner J. 2013; The transmembrane protein of the human endogenous retrovirus-K (HERV-K) modulates cytokine release and gene expression. PLoS ONE 8:e70399 [View Article][PubMed]
    [Google Scholar]
  57. Murphy K. M., Reiner S. L. 2002; The lineage decisions of helper T cells. Nat Rev Immunol 2:933–944 [View Article][PubMed]
    [Google Scholar]
  58. Nazli A., Kafka J. K., Ferreira V. H., Anipindi V., Mueller K., Osborne B. J., Dizzell S., Chauvin S., Mian M. F. et al. 2013; HIV-1 gp120 induces TLR2- and TLR4-mediated innate immune activation in human female genital epithelium. J Immunol 191:4246–4258 [View Article][PubMed]
    [Google Scholar]
  59. O’Neill L. A. J., Golenbock D., Bowie A. G. 2013; The history of Toll-like receptors – redefining innate immunity. Nat Rev Immunol 13:453–460 [View Article][PubMed]
    [Google Scholar]
  60. Okumura A., Pitha P. M., Yoshimura A., Harty R. N. 2010; Interaction between Ebola virus glycoprotein and host Toll-like receptor 4 leads to induction of proinflammatory cytokines and SOCS1. J Virol 84:27–33 [View Article][PubMed]
    [Google Scholar]
  61. Ono M. 1986; Molecular cloning and long terminal repeat sequences of human endogenous retrovirus genes related to types A and B retrovirus genes. J Virol 58:937–944[PubMed]
    [Google Scholar]
  62. Paludan S. R., Bowie A. G. 2013; Immune sensing of DNA. Immunity 38:870–880 [View Article][PubMed]
    [Google Scholar]
  63. Patel M. R., Emerman M., Malik H. S. 2011; Paleovirology – ghosts and gifts of viruses past. Curr Opin Virol 1:304–309 [View Article][PubMed]
    [Google Scholar]
  64. Pertel T., Hausmann S., Morger D., Züger S., Guerra J., Lascano J., Reinhard C., Santoni F. A., Uchil P. D. et al. 2011; TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472:361–365 [View Article][PubMed]
    [Google Scholar]
  65. Rabson A. B., Steele P. E., Garon C. F., Martin M. A. 1983; mRNA transcripts related to full-length endogenous retroviral DNA in human cells. Nature 306:604–607 [View Article][PubMed]
    [Google Scholar]
  66. Reiss D., Zhang Y., Mager D. L. 2007; Widely variable endogenous retroviral methylation levels in human placenta. Nucleic Acids Res 35:4743–4754 [View Article][PubMed]
    [Google Scholar]
  67. Repaske R., Steele P. E., O’Neill R. R., Rabson A. B., Martin M. A. 1985; Nucleotide sequence of a full-length human endogenous retroviral segment. J Virol 54:764–772[PubMed]
    [Google Scholar]
  68. Rice G. I., Forte G. M. A., Szynkiewicz M., Chase D. S., Aeby A., Abdel-Hamid M. S., Ackroyd S., Allcock R., Bailey K. M. et al. 2013; Assessment of interferon-related biomarkers in Aicardi–Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case–control study. Lancet Neurol 12:1159–1169 [View Article][PubMed]
    [Google Scholar]
  69. Rice G. I., del Toro Duany Y., Jenkinson E. M., Forte G. M. A., Anderson B. H., Ariaudo G., Bader-Meunier B., Baildam E. M., Battini R. et al. 2014; Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet 46:503–509 [View Article][PubMed]
    [Google Scholar]
  70. Rigby R. E., Webb L. M., Mackenzie K. J., Li Y., Leitch A., Reijns M. A. M., Lundie R. J., Revuelta A., Davidson D. J. et al. 2014; RNA : DNA hybrids are a novel molecular pattern sensed by TLR9. EMBO J 33:542–558 [View Article][PubMed]
    [Google Scholar]
  71. Rolland A., Jouvin-Marche E., Saresella M., Ferrante P., Cavaretta R., Créange A., Marche P., Perron H. 2005; Correlation between disease severity and in vitro cytokine production mediated by MSRV (multiple sclerosis associated retroviral element) envelope protein in patients with multiple sclerosis. J Neuroimmunol 160:195–203 [View Article][PubMed]
    [Google Scholar]
  72. Rolland A., Jouvin-Marche E., Viret C., Faure M., Perron H., Marche P. N. 2006; The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses. J Immunol 176:7636–7644 [View Article][PubMed]
    [Google Scholar]
  73. Ryoo J., Choi J., Oh C., Kim S., Seo M., Kim S.-Y., Seo D., Kim J., White T. E. et al. 2014; The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat Med 20:936–941 [View Article][PubMed]
    [Google Scholar]
  74. Sanville B., Dolan M. A., Wollenberg K., Yan Y., Martin C., Yeung M. L., Strebel K., Buckler-White A., Kozak C. A. 2010; Adaptive evolution of Mus Apobec3 includes retroviral insertion and positive selection at two clusters of residues flanking the substrate groove. PLoS Pathog 6:e1000974 [View Article][PubMed]
    [Google Scholar]
  75. Saresella M., Rolland A., Marventano I., Cavarretta R., Caputo D., Marche P., Perron H., Clerici M. 2009; Multiple sclerosis-associated retroviral agent (MSRV)-stimulated cytokine production in patients with relapsing-remitting multiple sclerosis. Mult Scler 15:443–447 [View Article][PubMed]
    [Google Scholar]
  76. Schoggins J. W., MacDuff D. A., Imanaka N., Gainey M. D., Shrestha B., Eitson J. L., Mar K. B., Richardson R. B., Ratushny A. V. et al. 2014; Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505:691–695 [View Article][PubMed]
    [Google Scholar]
  77. St Gelais C., de Silva S., Amie S. M., Coleman C. M., Hoy H., Hollenbaugh J. A., Kim B., Wu L. 2012; SAMHD1 restricts HIV-1 infection in dendritic cells (DCs) by dNTP depletion, but its expression in DCs and primary CD4+ T-lymphocytes cannot be upregulated by interferons. Retrovirology 9:105 [View Article][PubMed]
    [Google Scholar]
  78. Stetson D. B., Ko J. S., Heidmann T., Medzhitov R. 2008; Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134:587–598 [View Article][PubMed]
    [Google Scholar]
  79. Sze A., Olagnier D., Lin R., van Grevenynghe J., Hiscott J. 2013; SAMHD1 host restriction factor: a link with innate immune sensing of retrovirus infection. J Mol Biol 425:4981–4994 [View Article][PubMed]
    [Google Scholar]
  80. Szondy Z., Garabuczi E., Joós G., Tsay G. J., Sarang Z. 2014; Impaired clearance of apoptotic cells in chronic inflammatory diseases: therapeutic implications. Front Immunol 5:354 [View Article][PubMed]
    [Google Scholar]
  81. Takaoka A., Wang Z., Choi M. K., Yanai H., Negishi H., Ban T., Lu Y., Miyagishi M., Kodama T. et al. 2007; DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448:501–505 [View Article][PubMed]
    [Google Scholar]
  82. Tang D., Kang R., Coyne C. B., Zeh H. J., Lotze M. T. 2012; PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 249:158–175 [View Article][PubMed]
    [Google Scholar]
  83. Tugnet N., Rylance P., Roden D., Trela M., Nelson P. 2013; Human endogenous retroviruses (HERVs) and autoimmune rheumatic disease: is there a link?. Open Rheumatol J 7:13–21[PubMed]
    [Google Scholar]
  84. Turner M. D., Nedjai B., Hurst T., Pennington D. J. 2014; Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 1843:2563–2582 [View Article][PubMed]
    [Google Scholar]
  85. Unterholzner L., Keating S. E., Baran M., Horan K. A., Jensen S. B., Sharma S., Sirois C. M., Jin T., Latz E. et al. 2010; IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 11:997–1004 [View Article][PubMed]
    [Google Scholar]
  86. Volkman H. E., Stetson D. B. 2014; The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol 15:415–422 [View Article][PubMed]
    [Google Scholar]
  87. Wang-Johanning F., Radvanyi L., Rycaj K., Plummer J. B., Yan P., Sastry K. J., Piyathilake C. J., Hunt K. K., Johanning G. L. 2008; Human endogenous retrovirus K triggers an antigen-specific immune response in breast cancer patients. Cancer Res 68:5869–5877 [View Article][PubMed]
    [Google Scholar]
  88. Wang-Johanning F., Li M., Esteva F. J., Hess K. R., Yin B., Rycaj K., Plummer J. B., Garza J. G., Ambs S., Johanning G. L. 2014; Human endogenous retrovirus type K antibodies and mRNA as serum biomarkers of early-stage breast cancer. Int J Cancer 134:587–595 [View Article][PubMed]
    [Google Scholar]
  89. Xu J., Zoltick P. W., Gamero A. M., Gallucci S. 2014; TLR ligands up-regulate Trex1 expression in murine conventional dendritic cells through type I interferon and NF-κB-dependent signaling pathways. J Leukoc Biol 96:93–103 [View Article][PubMed]
    [Google Scholar]
  90. Yan N., Cherepanov P., Daigle J. E., Engelman A., Lieberman J. 2009; The SET complex acts as a barrier to autointegration of HIV-1. PLoS Pathog 5:e1000327 [View Article][PubMed]
    [Google Scholar]
  91. Yang Y.-G., Lindahl T., Barnes D. E. 2007; Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131:873–886 [View Article][PubMed]
    [Google Scholar]
  92. Yap M. W., Colbeck E., Ellis S. A., Stoye J. P. 2014; Evolution of the retroviral restriction gene Fv1: inhibition of non-MLV retroviruses. PLoS Pathog 10:e1003968 [View Article][PubMed]
    [Google Scholar]
  93. Yoshinobu K., Baudino L., Santiago-Raber M.-L., Morito N., Dunand-Sauthier I., Morley B. J., Evans L. H., Izui S. 2009; Selective up-regulation of intact, but not defective env RNAs of endogenous modified polytropic retrovirus by the Sgp3 locus of lupus-prone mice. J Immunol 182:8094–8103 [View Article][PubMed]
    [Google Scholar]
  94. Yu P., Lübben W., Slomka H., Gebler J., Konert M., Cai C., Neubrandt L., Prazeres da Costa O., Paul S. et al. 2012; Nucleic acid-sensing Toll-like receptors are essential for the control of endogenous retrovirus viremia and ERV-induced tumors. Immunity 37:867–879 [View Article][PubMed]
    [Google Scholar]
  95. Zuniga E. I., Hahm B., Oldstone M. B. A. 2007; Type I interferon during viral infections: multiple triggers for a multifunctional mediator. Curr Top Microbiol Immunol 316:337–357[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000017
Loading
/content/journal/jgv/10.1099/jgv.0.000017
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error