1887

Abstract

Japanese encephalitis virus (JEV), one of encephalitic flaviviruses, is naturally transmitted by mosquitoes. During infection, JEV generally enters host cells via receptor-mediated clathrin-dependent endocytosis that requires the 70 kDa heat-shock protein (Hsp70). Heat-shock cognate protein 70 (Hsc70) is one member of the Hsp70 family and is constitutively expressed; thus, it may be expressed under physiological conditions. In C6/36 cells, Hsc70 is upregulated in response to JEV infection. Since Hsc70 shows no relationship with viruses attaching to the cell surface, it probably does not serve as the receptor according to our results in the present study. In contrast, Hsc70 is evidently associated with virus penetration into the cell and resultant acidification of intracellular vesicles. It suggests that Hsc70 is highly involved in clathrin-mediated endocytosis, particularly at the late stage of viral entry into host cells. Furthermore, we found that Hsc70 is composed of at least three isoforms, including B, C and D; of these, isoform D helps JEV to penetrate C6/36 cells via clathrin-mediated endocytosis. This study provides relevant evidence that sheds light on the regulatory mechanisms of JEV infection in host cells, especially on the process of clathrin-mediated endocytosis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000015
2015-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/4/793.html?itemId=/content/journal/jgv/10.1099/jgv.0.000015&mimeType=html&fmt=ahah

References

  1. Acosta E. G., Castilla V., Damonte E. B. 2008; Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. J Gen Virol 89:474–484 [View Article][PubMed]
    [Google Scholar]
  2. Anderson R. G. W. 1989; The link between clathrin-coated pits and receptor mediated endocytosis. In Protein Traffic in Parasites and Mammalian Cells: Proceedings of a Workshop Held at the International Laboratory for Research on Animal Diseases, Nairobi, Kenya, 29 August to 1 September 1988 Edited by Lonsdale-Eccles J. D. International Laboratory for Research on Animal Diseases; Nairobi:
    [Google Scholar]
  3. Andoh T., Kawamata H., Umatake M., Terasawa K., Takegami T., Ochiai H. 1998; Short communication. J Neurovirol 4:627–631 [View Article][PubMed]
    [Google Scholar]
  4. Bartholomay L. C., Cho W. L., Rocheleau T. A., Boyle J. P., Beck E. T., Fuchs J. F., Liss P., Rusch M., Butler K. M.other authors 2004; Description of the transcriptomes of immune response-activated hemocytes from the mosquito vectors Aedes aegypti and Armigeres subalbatus. Infect Immun 72:4114–4126 [View Article][PubMed]
    [Google Scholar]
  5. Bhattacharyya S., Warfield K. L., Ruthel G., Bavari S., Aman M. J., Hope T. J. 2010; Ebola virus uses clathrin-mediated endocytosis as an entry pathway. Virology 401:18–28 [View Article][PubMed]
    [Google Scholar]
  6. Blanchard E., Belouzard S., Goueslain L., Wakita T., Dubuisson J., Wychowski C., Rouillé Y. 2006; Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol 80:6964–6972 [View Article][PubMed]
    [Google Scholar]
  7. Boorstein W. R., Ziegelhoffer T., Craig E. A. 1994; Molecular evolution of the HSP70 multigene family. J Mol Evol 38:1–17 [View Article][PubMed]
    [Google Scholar]
  8. Chai W. C., Huang C. G., Chuang C. K., Chen W. J. 2013; Upregulation of the vacuolar proton pump, H+ V-ATPase, in host cells infected with the Japanese encephalitis virus via clathrin-mediated endocytosis. Adapt Med 5:55–61
    [Google Scholar]
  9. Chang H. C., Newmyer S. L., Hull M. J., Ebersold M., Schmid S. L., Mellman I. 2002; Hsc70 is required for endocytosis and clathrin function in Drosophila. J Cell Biol 159:477–487 [View Article][PubMed]
    [Google Scholar]
  10. Chen T. H., Tang P., Yang C. F., Kao L. H., Lo Y. P., Chuang C. K., Shih Y. T., Chen W. J. 2011; Antioxidant defense is one of the mechanisms by which mosquito cells survive dengue 2 viral infection. Virology 410:410–417 [View Article][PubMed]
    [Google Scholar]
  11. Chiou S. S., Liu H., Chuang C. K., Lin C. C., Chen W. J. 2005; Fitness of Japanese encephalitis virus to Neuro-2a cells is determined by interactions of the viral envelope protein with highly sulfated glycosaminoglycans on the cell surface. J Med Virol 76:583–592 [View Article][PubMed]
    [Google Scholar]
  12. Chu J. J. H., Ng M. L. 2004; Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway. J Virol 78:10543–10555 [View Article][PubMed]
    [Google Scholar]
  13. Chuang C. K., Chen W. J. 2009; Experimental evidence that RNA recombination occurs in the Japanese encephalitis virus. Virology 394:286–297 [View Article][PubMed]
    [Google Scholar]
  14. Conner S. D., Schmid S. L. 2003; Regulated portals of entry into the cell. Nature 422:37–44 [View Article][PubMed]
    [Google Scholar]
  15. Cooper A., Shaul Y. 2006; Clathrin-mediated endocytosis and lysosomal cleavage of hepatitis B virus capsid-like core particles. J Biol Chem 281:16563–16569 [View Article][PubMed]
    [Google Scholar]
  16. Daecke J., Fackler O. T., Dittmar M. T., Kräusslich H. G. 2005; Involvement of clathrin-mediated endocytosis in human immunodeficiency virus type 1 entry. J Virol 79:1581–1594 [View Article][PubMed]
    [Google Scholar]
  17. Elefant F., Palter K. B. 1999; Tissue-specific expression of dominant negative mutant Drosophila HSC70 causes developmental defects and lethality. Mol Biol Cell 10:2101–2117 [View Article][PubMed]
    [Google Scholar]
  18. Endy T. P., Nisalak A. 2002; Japanese encephalitis virus: ecology and epidemiology. Curr Top Microbiol Immunol 267:11–48[PubMed]
    [Google Scholar]
  19. Guerrero C. A., Moreno L. P. 2012; Rotavirus receptor proteins Hsc70 and integrin αvβ3 are located in the lipid microdomains of animal intestinal cells. Acta Virol 56:63–70 [View Article][PubMed]
    [Google Scholar]
  20. Gupta R. S., Golding G. B. 1993; Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes. J Mol Evol 37:573–582 [View Article][PubMed]
    [Google Scholar]
  21. Gutiérrez-Ortega A., Sánchez-Hernández C., Gómez-García B. 2008; Respiratory syncytial virus glycoproteins uptake occurs through clathrin-mediated endocytosis in a human epithelial cell line. Virol J 5:127 [View Article][PubMed]
    [Google Scholar]
  22. Hartl F. U. 1996; Molecular chaperones in cellular protein folding. Nature 381:571–580 [View Article][PubMed]
    [Google Scholar]
  23. Hollidge B. S., Nedelsky N. B., Salzano M. V., Fraser J. W., González-Scarano F., Soldan S. S. 2012; Orthobunyavirus entry into neurons and other mammalian cells occurs via clathrin-mediated endocytosis and requires trafficking into early endosomes. J Virol 86:7988–8001 [View Article][PubMed]
    [Google Scholar]
  24. Ishak R., Tovey D. G., Howard C. R. 1988; Morphogenesis of yellow fever virus 17D in infected cell cultures. J Gen Virol 69:325–335 [View Article][PubMed]
    [Google Scholar]
  25. Ivanovic T., Agosto M. A., Chandran K., Nibert M. L. 2007; A role for molecular chaperone Hsc70 in reovirus outer capsid disassembly. J Biol Chem 282:12210–12219 [View Article][PubMed]
    [Google Scholar]
  26. Jiang J., Prasad K., Lafer E. M., Sousa R. 2005; Structural basis of interdomain communication in the Hsc70 chaperone. Mol Cell 20:513–524 [View Article][PubMed]
    [Google Scholar]
  27. Kalia M., Khasa R., Sharma M., Nain M., Vrati S. 2013; Japanese encephalitis virus infects neuronal cells through a clathrin-independent endocytic mechanism. J Virol 87:148–162 [View Article][PubMed]
    [Google Scholar]
  28. Lemmon S. K. 2001; Clathrin uncoating: Auxilin comes to life. Curr Biol 11:R49–R52 [View Article][PubMed]
    [Google Scholar]
  29. Lin A. E., Guttman J. A. 2010; Hijacking the endocytic machinery by microbial pathogens. Protoplasma 244:75–90 [View Article][PubMed]
    [Google Scholar]
  30. Lin C. C., Yang C. F., Tu C. H., Huang C. G., Shih Y. T., Chuang C. K., Chen W. J. 2007; A novel tetraspanin C189 upregulated in C6/36 mosquito cells following dengue 2 virus infection. Virus Res 124:176–183 [View Article][PubMed]
    [Google Scholar]
  31. Lindenbach B. D., Rice C. M. 2003; Molecular biology of flaviviruses. Adv Virus Res 59:23–61 [View Article][PubMed]
    [Google Scholar]
  32. Maxfield F. R., Yamashiro D. J. 1987; Endosome acidification and the pathways of receptor-mediated endocytosis. Adv Exp Med Biol 225:189–198 [View Article][PubMed]
    [Google Scholar]
  33. McMahon H. T., Boucrot E. 2011; Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12:517–533 [View Article][PubMed]
    [Google Scholar]
  34. Merrifield C. J., Perrais D., Zenisek D. 2005; Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121:593–606 [View Article][PubMed]
    [Google Scholar]
  35. Morano K. A. 2007; New tricks for an old dog: the evolving world of Hsp70. Ann N Y Acad Sci 1113:1–14 [View Article][PubMed]
    [Google Scholar]
  36. Nawa M. 1998; Effects of bafilomycin A1 on Japanese encephalitis virus in C6/36 mosquito cells. Arch Virol 143:1555–1568 [View Article][PubMed]
    [Google Scholar]
  37. Nawa M., Takasaki T., Yamada K. I., Kurane I., Akatsuka T. 2003; Interference in Japanese encephalitis virus infection of Vero cells by a cationic amphiphilic drug, chlorpromazine. J Gen Virol 84:1737–1741 [View Article][PubMed]
    [Google Scholar]
  38. Newmyer S. L., Schmid S. L. 2001; Dominant-interfering Hsc70 mutants disrupt multiple stages of the clathrin-coated vesicle cycle in vivo. J Cell Biol 152:607–620 [View Article][PubMed]
    [Google Scholar]
  39. Ng M. L., Lau L. C. 1988; Possible involvement of receptors in the entry of Kunjin virus into Vero cells. Arch Virol 100:199–211 [View Article][PubMed]
    [Google Scholar]
  40. Nirdé P., Derocq D., Maynadier M., Chambon M., Basile I., Gary-Bobo M., Garcia M. 2010; Heat shock cognate 70 protein secretion as a new growth arrest signal for cancer cells. Oncogene 29:117–127 [View Article][PubMed]
    [Google Scholar]
  41. Paingankar M. S., Gokhale M. D., Deobagkar D. N. 2010; Dengue-2-virus-interacting polypeptides involved in mosquito cell infection. Arch Virol 155:1453–1461 [View Article][PubMed]
    [Google Scholar]
  42. Powers M. V., Clarke P. A., Workman P. 2008; Dual targeting of HSC70 and HSP72 inhibits HSP90 function and induces tumor-specific apoptosis. Cancer Cell 14:250–262 [View Article][PubMed]
    [Google Scholar]
  43. Rappoport J. Z., Simon S. M., Benmerah A. 2004; Understanding living clathrin-coated pits. Traffic 5:327–337 [View Article][PubMed]
    [Google Scholar]
  44. Ren J., Ding T., Zhang W., Song J., Ma W. 2007; Does Japanese encephalitis virus share the same cellular receptor with other mosquito-borne flaviviruses on the C6/36 mosquito cells?. Virol J 4:83 [View Article][PubMed]
    [Google Scholar]
  45. Rybczynski R., Gilbert L. I. 2000; cDNA cloning and expression of a hormone-regulated heat shock protein (hsc 70) from the prothoracic gland of Manduca sexta. Insect Biochem Mol Biol 30:579–589 [View Article][PubMed]
    [Google Scholar]
  46. Sens D. A., McGuirt J. P., Khan W., Howell R. M., Todd J. H. 1997; Expression of hsc 70, but not hsp 70, in human third molar dental pulp. Eur J Oral Sci 105:271–277 [View Article][PubMed]
    [Google Scholar]
  47. Shih Y. T., Yang C. F., Chen W. J. 2010; Upregulation of a novel eukaryotic translation initiation factor 5A (eIF5A) in dengue 2 virus-infected mosquito cells. Virol J 7:214 [View Article][PubMed]
    [Google Scholar]
  48. Sim C., Hong Y. S., Vanlandingham D. L., Harker B. W., Christophides G. K., Kafatos F. C., Higgs S., Collins F. H. 2005; Modulation of Anopheles gambiae gene expression in response to o’nyong-nyong virus infection. Insect Mol Biol 14:475–481 [View Article][PubMed]
    [Google Scholar]
  49. Sim C., Hong Y. S., Tsetsarkin K. A., Vanlandingham D. L., Higgs S., Collins F. H. 2007; Anopheles gambiae heat shock protein cognate 70B impedes o’nyong-nyong virus replication. BMC Genomics 8:231 [View Article][PubMed]
    [Google Scholar]
  50. Sun X., Yau V. K., Briggs B. J., Whittaker G. R. 2005; Role of clathrin-mediated endocytosis during vesicular stomatitis virus entry into host cells. Virology 338:53–60 [View Article][PubMed]
    [Google Scholar]
  51. Takayama S., Xie Z., Reed J. C. 1999; An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J Biol Chem 274:781–786 [View Article][PubMed]
    [Google Scholar]
  52. Takei K., Haucke V. 2001; Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol 11:385–391 [View Article][PubMed]
    [Google Scholar]
  53. Ungewickell E. J., Hinrichsen L. 2007; Endocytosis: clathrin-mediated membrane budding. Curr Opin Cell Biol 19:417–425 [View Article][PubMed]
    [Google Scholar]
  54. Watanabe K., Fuse T., Asano I., Tsukahara F., Maru Y., Nagata K., Kitazato K., Kobayashi N. 2006; Identification of Hsc70 as an influenza virus matrix protein (M1) binding factor involved in the virus life cycle. FEBS Lett 580:5785–5790 [View Article][PubMed]
    [Google Scholar]
  55. Yamashita M., Hirayoshi K., Nagata K. 2004; Characterization of multiple members of the HSP70 family in platyfish culture cells: molecular evolution of stress protein HSP70 in vertebrates. Gene 336:207–218 [View Article][PubMed]
    [Google Scholar]
  56. Yang S., He M., Liu X., Li X., Fan B., Zhao S. 2013; Japanese encephalitis virus infects porcine kidney epithelial PK15 cells via clathrin- and cholesterol-dependent endocytosis. Virol J 10:258 [View Article][PubMed]
    [Google Scholar]
  57. Zárate S., Cuadras M. A., Espinosa R., Romero P., Juárez K. O., Camacho-Nuez M., Arias C. F., López S. 2003; Interaction of rotaviruses with Hsc70 during cell entry is mediated by VP5. J Virol 77:7254–7260 [View Article][PubMed]
    [Google Scholar]
  58. Zhao L., Pridgeon J. W., Becnel J. J., Clark G. G., Linthicum K. J. 2009; Identification of genes differentially expressed during heat shock treatment in Aedes aegypti. J Med Entomol 46:490–495 [View Article][PubMed]
    [Google Scholar]
  59. Zhu Y. Z., Cao M. M., Wang W. B., Wang W., Ren H., Zhao P., Qi Z. T. 2012; Association of heat-shock protein 70 with lipid rafts is required for Japanese encephalitis virus infection in Huh7 cells. J Gen Virol 93:61–71 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000015
Loading
/content/journal/jgv/10.1099/jgv.0.000015
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error