1887

Abstract

The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated 9) system is a highly efficient and powerful tool for RNA-guided editing of the cellular genome. Whether CRISPR/Cas9 can also cleave the genome of DNA viruses such as Epstein–Barr virus (EBV), which undergo episomal replication in human cells, remains to be established. Here, we reported on CRISPR/Cas9-mediated editing of the EBV genome in human cells. Two guide RNAs (gRNAs) were used to direct a targeted deletion of 558 bp in the promoter region of BART (HI A rightward transcript) which encodes viral microRNAs (miRNAs). Targeted editing was achieved in several human epithelial cell lines latently infected with EBV, including nasopharyngeal carcinoma C666-1 cells. CRISPR/Cas9-mediated editing of the EBV genome was efficient. A recombinant virus with the desired deletion was obtained after puromycin selection of cells expressing Cas9 and gRNAs. No off-target cleavage was found by deep sequencing. The loss of BART miRNA expression and activity was verified, supporting the BART promoter as the major promoter of BART RNA. Although CRISPR/Cas9-mediated editing of the multicopy episome of EBV in infected HEK293 cells was mostly incomplete, viruses could be recovered and introduced into other cells at low m.o.i. Recombinant viruses with an edited genome could be further isolated through single-cell sorting. Finally, a DsRed selectable marker was successfully introduced into the EBV genome during the course of CRISPR/Cas9-mediated editing. Taken together, our work provided not only the first genetic evidence that the BART promoter drives the expression of the BART transcript, but also a new and efficient method for targeted editing of EBV genome in human cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000012
2015-03-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/3/626.html?itemId=/content/journal/jgv/10.1099/jgv.0.000012&mimeType=html&fmt=ahah

References

  1. Adams A., Lindahl T.. ( 1975;). Epstein–Barr virus genomes with properties of circular DNA molecules in carrier cells. . Proc Natl Acad Sci U S A 72:, 1477–1481. [CrossRef][PubMed]
    [Google Scholar]
  2. Bi Y., Sun L., Gao D., Ding C., Li Z., Li Y., Cun W., Li Q.. ( 2014;). High-efficiency targeted editing of large viral genomes by RNA-guided nucleases. . PLoS Pathog 10:, e1004090. [CrossRef][PubMed]
    [Google Scholar]
  3. Böttcher R., Hollmann M., Merk K., Nitschko V., Obermaier C., Philippou-Massier J., Wieland I., Gaul U., Förstemann K.. ( 2014;). Efficient chromosomal gene modification with CRISPR/cas9 and PCR-based homologous recombination donors in cultured Drosophila cells. . Nucleic Acids Res 42:, e89. [CrossRef][PubMed]
    [Google Scholar]
  4. Cai X., Schäfer A., Lu S., Bilello J. P., Desrosiers R. C., Edwards R., Raab-Traub N., Cullen B. R.. ( 2006;). Epstein–Barr virus microRNAs are evolutionarily conserved and differentially expressed. . PLoS Pathog 2:, e23. [CrossRef][PubMed]
    [Google Scholar]
  5. Chen H., Hutt-Fletcher L., Cao L., Hayward S. D.. ( 2003;). A positive autoregulatory loop of LMP1 expression and STAT activation in epithelial cells latently infected with Epstein–Barr virus. . J Virol 77:, 4139–4148. [CrossRef][PubMed]
    [Google Scholar]
  6. Chen A., Divisconte M., Jiang X., Quink C., Wang F.. ( 2005a;). Epstein–Barr virus with the latent infection nuclear antigen 3B completely deleted is still competent for B-cell growth transformation in vitro. . J Virol 79:, 4506–4509. [CrossRef][PubMed]
    [Google Scholar]
  7. Chen H., Huang J., Wu F. Y., Liao G., Hutt-Fletcher L., Hayward S. D.. ( 2005b;). Regulation of expression of the Epstein–Barr virus BamHI-A rightward transcripts. . J Virol 79:, 1724–1733. [CrossRef][PubMed]
    [Google Scholar]
  8. Cheung S. T., Huang D. P., Hui A. B., Lo K. W., Ko C. W., Tsang Y. S., Wong N., Whitney B. M., Lee J. C.. ( 1999;). Nasopharyngeal carcinoma cell line (C666-1) consistently harbouring Epstein–Barr virus. . Int J Cancer 83:, 121–126. [CrossRef][PubMed]
    [Google Scholar]
  9. Cho S. W., Kim S., Kim Y., Kweon J., Kim H. S., Bae S., Kim J. S.. ( 2014;). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. . Genome Res 24:, 132–141. [CrossRef][PubMed]
    [Google Scholar]
  10. Choy E. Y. W., Kok K. H., Tsao S. W., Jin D. Y.. ( 2008a;). Utility of Epstein–Barr virus-encoded small RNA promoters for driving the expression of fusion transcripts harboring short hairpin RNAs. . Gene Ther 15:, 191–202. [CrossRef][PubMed]
    [Google Scholar]
  11. Choy E. Y. W., Siu K. L., Kok K. H., Lung R. W. M., Tsang C. M., To K. F., Kwong D. L., Tsao S. W., Jin D. Y.. ( 2008b;). An Epstein–Barr virus-encoded microRNA targets PUMA to promote host cell survival. . J Exp Med 205:, 2551–2560. [CrossRef][PubMed]
    [Google Scholar]
  12. Edwards R. H., Marquitz A. R., Raab-Traub N.. ( 2008;). Epstein–Barr virus BART microRNAs are produced from a large intron prior to splicing. . J Virol 82:, 9094–9106. [CrossRef][PubMed]
    [Google Scholar]
  13. Feederle R., Bartlett E. J., Delecluse H. J.. ( 2010;). Epstein–Barr virus genetics: talking about the BAC generation. . Herpesviridae 1:, 6. [CrossRef][PubMed]
    [Google Scholar]
  14. Feederle R., Linnstaedt S. D., Bannert H., Lips H., Bencun M., Cullen B. R., Delecluse H. J.. ( 2011;). A viral microRNA cluster strongly potentiates the transforming properties of a human herpesvirus. . PLoS Pathog 7:, e1001294. [CrossRef][PubMed]
    [Google Scholar]
  15. Geiser V., Cahir-McFarland E., Kieff E.. ( 2011;). Latent membrane protein 1 is dispensable for Epstein–Barr virus replication in human embryonic kidney 293 cells. . PLoS One 6:, e22929. [CrossRef][PubMed]
    [Google Scholar]
  16. Hsu P. D., Lander E. S., Zhang F.. ( 2014;). Development and applications of CRISPR-Cas9 for genome engineering. . Cell 157:, 1262–1278. [CrossRef][PubMed]
    [Google Scholar]
  17. Kanda T., Yajima M., Ahsan N., Tanaka M., Takada K.. ( 2004;). Production of high-titer Epstein–Barr virus recombinants derived from Akata cells by using a bacterial artificial chromosome system. . J Virol 78:, 7004–7015. [CrossRef][PubMed]
    [Google Scholar]
  18. Kew C., Lui P. Y., Chan C. P., Liu X., Au S. W. N., Mohr I., Jin D. Y., Kok K. H.. ( 2013;). Suppression of PACT-induced type I interferon production by herpes simplex virus 1 Us11 protein. . J Virol 87:, 13141–13149. [CrossRef][PubMed]
    [Google Scholar]
  19. Kwok H., Wu C. W., Palser A. L., Kellam P., Sham P. C., Kwong D. L. W., Chiang A. K. S.. ( 2014;). Genomic diversity of Epstein–Barr virus genomes isolated from primary nasopharyngeal carcinoma biopsy samples. . J Virol 88:, 10662–10672. [CrossRef][PubMed]
    [Google Scholar]
  20. Lan K., Verma S. C., Murakami M., Bajaj B., Robertson E. S.. ( 2007;). Epstein–Barr Virus (EBV): infection, propagation, quantitation, and storage. . Curr Protoc Microbiol Chapter 14:, 2.[PubMed]
    [Google Scholar]
  21. Lei T., Yuen K. S., Tsao S. W., Chen H., Kok K. H., Jin D. Y.. ( 2013a;). Perturbation of biogenesis and targeting of Epstein–Barr virus-encoded miR-BART3 microRNA by adenosine-to-inosine editing. . J Gen Virol 94:, 2739–2744. [CrossRef][PubMed]
    [Google Scholar]
  22. Lei T., Yuen K. S., Xu R., Tsao S. W., Chen H., Li M., Kok K. H., Jin D. Y.. ( 2013b;). Targeting of DICE1 tumor suppressor by Epstein–Barr virus-encoded miR-BART3* microRNA in nasopharyngeal carcinoma. . Int J Cancer 133:, 79–87. [CrossRef][PubMed]
    [Google Scholar]
  23. Lieberman P. M.. ( 2013;). Keeping it quiet: chromatin control of gammaherpesvirus latency. . Nat Rev Microbiol 11:, 863–875. [CrossRef][PubMed]
    [Google Scholar]
  24. Lin Z., Wang X., Strong M. J., Concha M., Baddoo M., Xu G., Baribault C., Fewell C., Hulme W.. & other authors ( 2013;). Whole-genome sequencing of the Akata and Mutu Epstein–Barr virus strains. . J Virol 87:, 1172–1182. [CrossRef][PubMed]
    [Google Scholar]
  25. Liu P., Speck S. H.. ( 2003;). Synergistic autoactivation of the Epstein–Barr virus immediate-early BRLF1 promoter by Rta and Zta. . Virology 310:, 199–206. [CrossRef][PubMed]
    [Google Scholar]
  26. Liu P., Fang X., Feng Z., Guo Y. M., Peng R. J., Liu T., Huang Z., Feng Y., Sun X.. & other authors ( 2011;). Direct sequencing and characterization of a clinical isolate of Epstein–Barr virus from nasopharyngeal carcinoma tissue by using next-generation sequencing technology. . J Virol 85:, 11291–11299. [CrossRef][PubMed]
    [Google Scholar]
  27. Lo A. K. F., Dawson C. W., Jin D. Y., Lo K. W.. ( 2012;). The pathological roles of BART miRNAs in nasopharyngeal carcinoma. . J Pathol 227:, 392–403. [CrossRef][PubMed]
    [Google Scholar]
  28. Lun S. W. M., Cheung S. T., Cheung P. F. Y., To K. F., Woo J. K. S., Choy K. W., Chow C., Cheung C. C. M., Chung G. T. Y.. & other authors ( 2012;). CD44+ cancer stem-like cells in EBV-associated nasopharyngeal carcinoma. . PLoS ONE 7:, e52426. [CrossRef][PubMed]
    [Google Scholar]
  29. Mali P., Esvelt K. M., Church G. M.. ( 2013;). Cas9 as a versatile tool for engineering biology. . Nat Methods 10:, 957–963. [CrossRef][PubMed]
    [Google Scholar]
  30. Marquitz A. R., Mathur A., Chugh P. E., Dittmer D. P., Raab-Traub N.. ( 2014;). Expression profile of microRNAs in Epstein–Barr virus-infected AGS gastric carcinoma cells. . J Virol 88:, 1389–1393. [CrossRef][PubMed]
    [Google Scholar]
  31. Raab-Traub N.. ( 2012;). Novel mechanisms of EBV-induced oncogenesis. . Curr Opin Virol 2:, 453–458. [CrossRef][PubMed]
    [Google Scholar]
  32. Ran F. A., Hsu P. D., Wright J., Agarwala V., Scott D. A., Zhang F.. ( 2013;). Genome engineering using the CRISPR-Cas9 system. . Nat Protoc 8:, 2281–2308. [CrossRef][PubMed]
    [Google Scholar]
  33. Riley K. J., Rabinowitz G. S., Yario T. A., Luna J. M., Darnell R. B., Steitz J. A.. ( 2012;). EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. . EMBO J 31:, 2207–2221. [CrossRef][PubMed]
    [Google Scholar]
  34. Sarisky R. T., Hayward G. S.. ( 1996;). Evidence that the UL84 gene product of human cytomegalovirus is essential for promoting oriLyt-dependent DNA replication and formation of replication compartments in cotransfection assays. . J Virol 70:, 7398–7413.[PubMed]
    [Google Scholar]
  35. Seto E., Moosmann A., Grömminger S., Walz N., Grundhoff A., Hammerschmidt W.. ( 2010;). Micro RNAs of Epstein–Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells. . PLoS Pathog 6:, e1001063. [CrossRef][PubMed]
    [Google Scholar]
  36. Shen B., Zhang W., Zhang J., Zhou J., Wang J., Chen L., Wang L., Hodgkins A., Iyer V.. & other authors ( 2014;). Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. . Nat Methods 11:, 399–402. [CrossRef][PubMed]
    [Google Scholar]
  37. Shimizu N., Yoshiyama H., Takada K.. ( 1996;). Clonal propagation of Epstein–Barr virus (EBV) recombinants in EBV-negative Akata cells. . J Virol 70:, 7260–7263.[PubMed]
    [Google Scholar]
  38. Siu K. L., Yeung M. L., Kok K. H., Yuen K. S., Kew C., Lui P. Y., Chan C. P., Tse H., Woo P. C. Y.. & other authors ( 2014;). Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response. . J Virol 88:, 4866–4876. [CrossRef][PubMed]
    [Google Scholar]
  39. Tang H. M. V., Gao W. W., Chan C. P., Siu Y. T., Wong C. M., Kok K. H., Ching Y. P., Takemori H., Jin D. Y.. ( 2013;). LKB1 tumor suppressor and salt-inducible kinases negatively regulate human T-cell leukemia virus type 1 transcription. . Retrovirology 10:, 40. [CrossRef][PubMed]
    [Google Scholar]
  40. Terns R. M., Terns M. P.. ( 2014;). CRISPR-based technologies: prokaryotic defense weapons repurposed. . Trends Genet 30:, 111–118. [CrossRef][PubMed]
    [Google Scholar]
  41. Tsai M. H., Raykova A., Klinke O., Bernhardt K., Gärtner K., Leung C. S., Geletneky K., Sertel S., Münz C.. & other authors ( 2013;). Spontaneous lytic replication and epitheliotropism define an Epstein–Barr virus strain found in carcinomas. . Cell Rep 5:, 458–470. [CrossRef][PubMed]
    [Google Scholar]
  42. Tsang C. M., Zhang G., Seto E., Takada K., Deng W., Yip Y. L., Man C., Hau P. M., Chen H.. & other authors ( 2010;). Epstein–Barr virus infection in immortalized nasopharyngeal epithelial cells: regulation of infection and phenotypic characterization. . Int J Cancer 127:, 1570–1583. [CrossRef][PubMed]
    [Google Scholar]
  43. Tsang C. M., Yip Y. L., Lo K. W., Deng W., To K. F., Hau P. M., Lau V. M., Takada K., Lui V. W.. & other authors ( 2012;). Cyclin D1 overexpression supports stable EBV infection in nasopharyngeal epithelial cells. . Proc Natl Acad Sci U S A 109:, E3473–E3482. [CrossRef][PubMed]
    [Google Scholar]
  44. Tso K. K., Yip K. Y., Mak C. K., Chung G. T., Lee S. D., Cheung S. T., To K. F., Lo K. W.. ( 2013;). Complete genomic sequence of Epstein–Barr virus in nasopharyngeal carcinoma cell line C666-1. . Infect Agent Cancer 8:, 29. [CrossRef][PubMed]
    [Google Scholar]
  45. Umbach J. L., Cullen B. R.. ( 2009;). The role of RNAi and microRNAs in animal virus replication and antiviral immunity. . Genes Dev 23:, 1151–1164. [CrossRef][PubMed]
    [Google Scholar]
  46. Westphal E. M., Sierakowska H., Livanos E., Kole R., Vos J. M.. ( 1998;). A system for shuttling 200-kb BAC/PAC clones into human cells: stable extrachromosomal persistence and long-term ectopic gene activation. . Hum Gene Ther 9:, 1863–1873. [CrossRef][PubMed]
    [Google Scholar]
  47. Yip Y. L., Pang P. S., Deng W., Tsang C. M., Zeng M., Hau P. M., Man C., Jin Y., Yuen A. P., Tsao S. W.. ( 2013;). Efficient immortalization of primary nasopharyngeal epithelial cells for EBV infection study. . PLoS One 8:, e78395. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000012
Loading
/content/journal/jgv/10.1099/jgv.0.000012
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error