1887

Abstract

Since one of us co-authored a review on NS5A a decade ago, the hepatitis C virus (HCV) field has changed dramatically, primarily due to the advent of the JFH-1 cell culture infectious clone, which allowed the study of all aspects of the virus life cycle from entry to exit. This review will describe advances in our understanding of NS5A biology over the past decade, highlighting how the JFH-1 system has allowed us to determine that NS5A is essential not only in genome replication but also in the assembly of infectious virions. We shall review the recent structural insights – NS5A is predicted to comprise three domains; X-ray crystallography has revealed the structure of domain I but there is a lack of detailed structural information about the other two domains, which are predicted to be largely unstructured. Recent insights into the phosphorylation of NS5A will be discussed, and we shall highlight a few pertinent examples from the ever-expanding list of NS5A-binding partners identified over the past decade. Lastly, we shall review the literature showing that NS5A is a potential target for a new class of highly potent small molecules that function to inhibit virus replication. These direct-acting antivirals (DAAs) are now either licensed, or in the late stages of approval for clinical use both in the USA and in the UK/Europe. In combination with other DAAs targeting the viral protease (NS3) and polymerase (NS5B), they are revolutionizing treatment for HCV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000009
2015-04-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/4/727.html?itemId=/content/journal/jgv/10.1099/jgv.0.000009&mimeType=html&fmt=ahah

References

  1. Amako Y. , Igloi Z. , Mankouri J. , Kazlauskas A. , Saksela K. , Dallas M. , Peers C. , Harris M. . ( 2013; ). Hepatitis C virus NS5A inhibits mixed lineage kinase 3 to block apoptosis. . J Biol Chem 288:, 24753–24763. [CrossRef] [PubMed]
    [Google Scholar]
  2. Appel N. , Pietschmann T. , Bartenschlager R. . ( 2005; ). Mutational analysis of hepatitis C virus nonstructural protein 5A: potential role of differential phosphorylation in RNA replication and identification of a genetically flexible domain. . J Virol 79:, 3187–3194. [CrossRef] [PubMed]
    [Google Scholar]
  3. Appel N. , Zayas M. , Miller S. , Krijnse-Locker J. , Schaller T. , Friebe P. , Kallis S. , Engel U. , Bartenschlager R. . ( 2008; ). Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. . PLoS Pathog 4:, e1000035. [CrossRef] [PubMed]
    [Google Scholar]
  4. Arumugaswami V. , Remenyi R. , Kanagavel V. , Sue E. Y. , Ngoc Ho T. , Liu C. , Fontanes V. , Dasgupta A. , Sun R. . ( 2008; ). High-resolution functional profiling of hepatitis C virus genome. . PLoS Pathog 4:, e1000182. [CrossRef] [PubMed]
    [Google Scholar]
  5. Ascher D. B. , Wielens J. , Nero T. L. , Doughty L. , Morton C. J. , Parker M. W. . ( 2014; ). Potent hepatitis C inhibitors bind directly to NS5A and reduce its affinity for RNA. . Sci Rep 4:, 4765. [CrossRef] [PubMed]
    [Google Scholar]
  6. Berger C. , Romero-Brey I. , Radujkovic D. , Terreux R. , Zayas M. , Paul D. , Harak C. , Hoppe S. , Gao M. . & other authors ( 2014; ). Daclatasvir-like Inhibitors of NS5A Block Early Biogenesis of HCV-induced Membranous Replication Factories, Independent of RNA Replication. . Gastroenterology 147:, 1094–1105. [CrossRef]
    [Google Scholar]
  7. Blight K. J. , Kolykhalov A. A. , Rice C. M. . ( 2000; ). Efficient initiation of HCV RNA replication in cell culture. . Science 290:, 1972–1974.[CrossRef]
    [Google Scholar]
  8. Burbelo P. D. , Dubovi E. J. , Simmonds P. , Medina J. L. , Henriquez J. A. , Mishra N. , Wagner J. , Tokarz R. , Cullen J. M. . & other authors ( 2012; ). Serology-enabled discovery of genetically diverse hepaciviruses in a new host. . J Virol 86:, 6171–6178. [CrossRef] [PubMed]
    [Google Scholar]
  9. Camus G. , Herker E. , Modi A. A. , Haas J. T. , Ramage H. R. , Farese R. V. Jr , Ott M. . ( 2013; ). Diacylglycerol acyltransferase-1 localizes hepatitis C virus NS5A protein to lipid droplets and enhances NS5A interaction with the viral capsid core. . J Biol Chem 288:, 9915–9923. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chatterji U. , Lim P. , Bobardt M. D. , Wieland S. , Cordek D. G. , Vuagniaux G. , Chisari F. , Cameron C. E. , Targett-Adams P. . & other authors ( 2010; ). HCV resistance to cyclosporin A does not correlate with a resistance of the NS5A–cyclophilin A interaction to cyclophilin inhibitors. . J Hepatol 53:, 50–56. [CrossRef] [PubMed]
    [Google Scholar]
  11. Chen Y. C. , Su W. C. , Huang J. Y. , Chao T. C. , Jeng K. S. , Machida K. , Lai M. M. . ( 2010; ). Polo-like kinase 1 is involved in hepatitis C virus replication by hyperphosphorylating NS5A. . J Virol 84:, 7983–7993. [CrossRef] [PubMed]
    [Google Scholar]
  12. Cheong J. K. , Virshup D. M. . ( 2011; ). Casein kinase 1: complexity in the family. . Int J Biochem Cell Biol 43:, 465–469. [CrossRef] [PubMed]
    [Google Scholar]
  13. Coelmont L. , Hanoulle X. , Chatterji U. , Berger C. , Snoeck J. , Bobardt M. , Lim P. , Vliegen I. , Paeshuyse J. . & other authors ( 2010; ). DEB025 (Alisporivir) inhibits hepatitis C virus replication by preventing a cyclophilin A induced cis-trans isomerisation in domain II of NS5A. . PLoS ONE 5:, e13687. [CrossRef] [PubMed]
    [Google Scholar]
  14. Cordek D. G. , Croom-Perez T. J. , Hwang J. , Hargittai M. R. , Subba-Reddy C. V. , Han Q. , Lodeiro M. F. , Ning G. , McCrory T. S. . & other authors ( 2014; ). Expanding the proteome of an RNA virus by phosphorylation of an intrinsically disordered viral protein. . J Biol Chem 289:, 24397–24416. [CrossRef] [PubMed]
    [Google Scholar]
  15. Daito T. , Watashi K. , Sluder A. , Ohashi H. , Nakajima S. , Borroto-Esoda K. , Fujita T. , Wakita T. . ( 2014; ). Cyclophilin inhibitors reduce phosphorylation of RNA-dependent protein kinase to restore expression of IFN-stimulated genes in HCV-infected cells. . Gastroenterology 147:, 463–472. [CrossRef] [PubMed]
    [Google Scholar]
  16. Delang L. , Paeshuyse J. , Neyts J. . ( 2012; ). The role of phosphatidylinositol 4-kinases and phosphatidylinositol 4-phosphate during viral replication. . Biochem Pharmacol 84:, 1400–1408. [CrossRef] [PubMed]
    [Google Scholar]
  17. Evans M. J. , Rice C. M. , Goff S. P. . ( 2004; ). Phosphorylation of hepatitis C virus nonstructural protein 5A modulates its protein interactions and viral RNA replication. . Proc Natl Acad Sci U S A 101:, 13038–13043. [CrossRef] [PubMed]
    [Google Scholar]
  18. Eyre N. S. , Fiches G. N. , Aloia A. L. , Helbig K. J. , McCartney E. M. , McErlean C. S. , Li K. , Aggarwal A. , Turville S. G. , Beard M. R. . ( 2014; ). Dynamic imaging of the hepatitis C virus NS5A protein during a productive infection. . J Virol 88:, 3636–3652. [CrossRef] [PubMed]
    [Google Scholar]
  19. Farquhar M. J. , Harris H. J. , Diskar M. , Jones S. , Mee C. J. , Nielsen S. U. , Brimacombe C. L. , Molina S. , Toms G. L. . & other authors ( 2008; ). Protein kinase A-dependent step(s) in hepatitis C virus entry and infectivity. . J Virol 82:, 8797–8811. [CrossRef] [PubMed]
    [Google Scholar]
  20. Feuerstein S. , Solyom Z. , Aladag A. , Favier A. , Schwarten M. , Hoffmann S. , Willbold D. , Brutscher B. . ( 2012; ). Transient structure and SH3 interaction sites in an intrinsically disordered fragment of the hepatitis C virus protein NS5A. . J Mol Biol 420:, 310–323. [CrossRef] [PubMed]
    [Google Scholar]
  21. Foster T. L. , Belyaeva T. , Stonehouse N. J. , Pearson A. R. , Harris M. . ( 2010; ). All three domains of the hepatitis C virus nonstructural NS5A protein contribute to RNA binding. . J Virol 84:, 9267–9277. [CrossRef] [PubMed]
    [Google Scholar]
  22. Foster T. L. , Gallay P. , Stonehouse N. J. , Harris M. . ( 2011; ). Cyclophilin A interacts with domain II of hepatitis C virus NS5A and stimulates RNA binding in an isomerase-dependent manner. . J Virol 85:, 7460–7464. [CrossRef] [PubMed]
    [Google Scholar]
  23. Fridell R. A. , Qiu D. , Wang C. , Valera L. , Gao M. . ( 2010; ). Resistance analysis of the hepatitis C virus NS5A inhibitor BMS-790052 in an in vitro replicon system. . Antimicrob Agents Chemother 54:, 3641–3650. [CrossRef] [PubMed]
    [Google Scholar]
  24. Fridell R. A. , Qiu D. , Valera L. , Wang C. , Rose R. E. , Gao M. . ( 2011; ). Distinct functions of NS5A in hepatitis C virus RNA replication uncovered by studies with the NS5A inhibitor BMS-790052. . J Virol 85:, 7312–7320. [CrossRef] [PubMed]
    [Google Scholar]
  25. Gao M. , Nettles R. E. , Belema M. , Snyder L. B. , Nguyen V. N. , Fridell R. A. , Serrano-Wu M. H. , Langley D. R. , Sun J. H. . & other authors ( 2010; ). Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. . Nature 465:, 96–100. [CrossRef] [PubMed]
    [Google Scholar]
  26. Hanoulle X. , Verdegem D. , Badillo A. , Wieruszeski J. M. , Penin F. , Lippens G. . ( 2009a; ). Domain 3 of non-structural protein 5A from hepatitis C virus is natively unfolded. . Biochem Biophys Res Commun 381:, 634–638. [CrossRef] [PubMed]
    [Google Scholar]
  27. Hanoulle X. , Badillo A. , Wieruszeski J. M. , Verdegem D. , Landrieu I. , Bartenschlager R. , Penin F. , Lippens G. . ( 2009b; ). Hepatitis C virus NS5A protein is a substrate for the peptidyl-prolyl cis/trans isomerase activity of cyclophilins A and B. . J Biol Chem 284:, 13589–13601. [CrossRef] [PubMed]
    [Google Scholar]
  28. Hanoulle X. , Badillo A. , Verdegem D. , Penin F. , Lippens G. . ( 2010; ). The domain 2 of the HCV NS5A protein is intrinsically unstructured. . Protein Pept Lett 17:, 1012–1018. [CrossRef] [PubMed]
    [Google Scholar]
  29. Huang L. , Hwang J. , Sharma S. D. , Hargittai M. R. , Chen Y. , Arnold J. J. , Raney K. D. , Cameron C. E. . ( 2005; ). Hepatitis C virus nonstructural protein 5A (NS5A) is an RNA-binding protein. . J Biol Chem 280:, 36417–36428. [CrossRef] [PubMed]
    [Google Scholar]
  30. Hughes M. , Griffin S. , Harris M. . ( 2009a; ). Domain III of NS5A contributes to both RNA replication and assembly of hepatitis C virus particles. . J Gen Virol 90:, 1329–1334. [CrossRef] [PubMed]
    [Google Scholar]
  31. Hughes M. , Gretton S. , Shelton H. , Brown D. D. , McCormick C. J. , Angus A. G. , Patel A. H. , Griffin S. , Harris M. . ( 2009b; ). A conserved proline between domains II and III of hepatitis C virus NS5A influences both RNA replication and virus assembly. . J Virol 83:, 10788–10796. [CrossRef] [PubMed]
    [Google Scholar]
  32. Hwang J. , Huang L. , Cordek D. G. , Vaughan R. , Reynolds S. L. , Kihara G. , Raney K. D. , Kao C. C. , Cameron C. E. . ( 2010; ). Hepatitis C virus nonstructural protein 5A: biochemical characterization of a novel structural class of RNA-binding proteins. . J Virol 84:, 12480–12491. [CrossRef] [PubMed]
    [Google Scholar]
  33. Kapoor A. , Simmonds P. , Gerold G. , Qaisar N. , Jain K. , Henriquez J. A. , Firth C. , Hirschberg D. L. , Rice C. M. . & other authors ( 2011; ). Characterization of a canine homolog of hepatitis C virus. . Proc Natl Acad Sci U S A 108:, 11608–11613. [CrossRef] [PubMed]
    [Google Scholar]
  34. Kapoor A. , Simmonds P. , Scheel T. K. , Hjelle B. , Cullen J. M. , Burbelo P. D. , Chauhan L. V. , Duraisamy R. , Sanchez Leon M. . & other authors ( 2013; ). Identification of rodent homologs of hepatitis C virus and pegiviruses. . MBio 4:, e00216-13. [CrossRef] [PubMed]
    [Google Scholar]
  35. Kärkkäinen S. , Hiipakka M. , Wang J. H. , Kleino I. , Vähä-Jaakkola M. , Renkema G. H. , Liss M. , Wagner R. , Saksela K. . ( 2006; ). Identification of preferred protein interactions by phage-display of the human Src homology-3 proteome. . EMBO Rep 7:, 186–191. [CrossRef] [PubMed]
    [Google Scholar]
  36. Kim S. , Date T. , Yokokawa H. , Kono T. , Aizaki H. , Maurel P. , Gondeau C. , Wakita T. . ( 2014; ). Development of hepatitis C virus genotype 3a cell culture system. . Hepatology 60:, 1838–1850. [CrossRef] [PubMed]
    [Google Scholar]
  37. Lambert S. M. , Langley D. R. , Garnett J. A. , Angell R. , Hedgethorne K. , Meanwell N. A. , Matthews S. J. . ( 2014; ). The crystal structure of NS5A domain 1 from genotype 1a reveals new clues to the mechanism of action for dimeric HCV inhibitors. . Protein Sci 23:, 723–734. [CrossRef] [PubMed]
    [Google Scholar]
  38. Lauck M. , Sibley S. D. , Lara J. , Purdy M. A. , Khudyakov Y. , Hyeroba D. , Tumukunde A. , Weny G. , Switzer W. M. . & other authors ( 2013; ). A novel hepacivirus with an unusually long and intrinsically disordered NS5A protein in a wild Old World primate. . J Virol 87:, 8971–8981. [CrossRef] [PubMed]
    [Google Scholar]
  39. Lee C. , Ma H. , Hang J. Q. , Leveque V. , Sklan E. H. , Elazar M. , Klumpp K. , Glenn J. S. . ( 2011; ). The hepatitis C virus NS5A inhibitor (BMS-790052) alters the subcellular localization of the NS5A non-structural viral protein. . Virology 414:, 10–18. [CrossRef] [PubMed]
    [Google Scholar]
  40. LeMay K. L. , Treadaway J. , Angulo I. , Tellinghuisen T. L. . ( 2013; ). A hepatitis C virus NS5A phosphorylation site that regulates RNA replication. . J Virol 87:, 1255–1260. [CrossRef] [PubMed]
    [Google Scholar]
  41. Liang Y. , Kang C. B. , Yoon H. S. . ( 2006; ). Molecular and structural characterization of the domain 2 of hepatitis C virus non-structural protein 5A. . Mol Cells 22:, 13–20.[PubMed]
    [Google Scholar]
  42. Liang Y. , Ye H. , Kang C. B. , Yoon H. S. . ( 2007; ). Domain 2 of nonstructural protein 5A (NS5A) of hepatitis C virus is natively unfolded. . Biochemistry 46:, 11550–11558. [CrossRef] [PubMed]
    [Google Scholar]
  43. Lim P. J. , Chatterji U. , Cordek D. , Sharma S. D. , Garcia-Rivera J. A. , Cameron C. E. , Lin K. , Targett-Adams P. , Gallay P. A. . ( 2012; ). Correlation between NS5A dimerization and hepatitis C virus replication. . J Biol Chem 287:, 30861–30873. [CrossRef] [PubMed]
    [Google Scholar]
  44. Lohmann V. , Körner F. , Koch J. O. , Herian U. , Theilmann L. , Bartenschlager R. . ( 1999; ). Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. . Science 285:, 110–113. [CrossRef] [PubMed]
    [Google Scholar]
  45. Love R. A. , Brodsky O. , Hickey M. J. , Wells P. A. , Cronin C. N. . ( 2009; ). Crystal structure of a novel dimeric form of NS5A domain I protein from hepatitis C virus. . J Virol 83:, 4395–4403. [CrossRef] [PubMed]
    [Google Scholar]
  46. Luban J. , Bossolt K. L. , Franke E. K. , Kalpana G. V. , Goff S. P. . ( 1993; ). Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. . Cell 73:, 1067–1078. [CrossRef] [PubMed]
    [Google Scholar]
  47. Macdonald A. , Harris M. . ( 2004; ). Hepatitis C virus NS5A: tales of a promiscuous protein. . J Gen Virol 85:, 2485–2502. [CrossRef] [PubMed]
    [Google Scholar]
  48. Mankouri J. , Griffin S. , Harris M. . ( 2008; ). The hepatitis C virus non-structural protein NS5A alters the trafficking profile of the epidermal growth factor receptor. . Traffic 9:, 1497–1509. [CrossRef] [PubMed]
    [Google Scholar]
  49. Mankouri J. , Dallas M. L. , Hughes M. E. , Griffin S. D. , Macdonald A. , Peers C. , Harris M. . ( 2009; ). Suppression of a pro-apoptotic K+ channel as a mechanism for hepatitis C virus persistence. . Proc Natl Acad Sci U S A 106:, 15903–15908. [CrossRef] [PubMed]
    [Google Scholar]
  50. Masaki T. , Suzuki R. , Murakami K. , Aizaki H. , Ishii K. , Murayama A. , Date T. , Matsuura Y. , Miyamura T. . & other authors ( 2008; ). Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles. . J Virol 82:, 7964–7976. [CrossRef] [PubMed]
    [Google Scholar]
  51. Masaki T. , Matsunaga S. , Takahashi H. , Nakashima K. , Kimura Y. , Ito M. , Matsuda M. , Murayama A. , Kato T. . & other authors ( 2014; ). Involvement of hepatitis C virus NS5A hyperphosphorylation mediated by casein kinase I-α in infectious virus production. . J Virol 88:, 7541–7555. [CrossRef] [PubMed]
    [Google Scholar]
  52. McGivern D. R. , Masaki T. , Williford S. , Ingravallo P. , Feng Z. , Lahser F. , Asante-Appiah E. , Neddermann P. , De Francesco R. . & other authors ( 2014; ). Kinetic analyses reveal potent and early blockade of hepatitis C virus assembly by NS5A inhibitors. . Gastroenterology 147:, 453–462.e7. [CrossRef] [PubMed]
    [Google Scholar]
  53. Milo R. . ( 2013; ). What is the total number of protein molecules per cell volume? A call to rethink some published values. . Bioessays 35:, 1050–1055. [CrossRef] [PubMed]
    [Google Scholar]
  54. Miyanari Y. , Atsuzawa K. , Usuda N. , Watashi K. , Hishiki T. , Zayas M. , Bartenschlager R. , Wakita T. , Hijikata M. , Shimotohno K. . ( 2007; ). The lipid droplet is an important organelle for hepatitis C virus production. . Nat Cell Biol 9:, 1089–1097. [CrossRef] [PubMed]
    [Google Scholar]
  55. Moradpour D. , Evans M. J. , Gosert R. , Yuan Z. , Blum H. E. , Goff S. P. , Lindenbach B. D. , Rice C. M. . ( 2004; ). Insertion of green fluorescent protein into nonstructural protein 5A allows direct visualization of functional hepatitis C virus replication complexes. . J Virol 78:, 7400–7409. [CrossRef] [PubMed]
    [Google Scholar]
  56. Nakagawa M. , Sakamoto N. , Enomoto N. , Tanabe Y. , Kanazawa N. , Koyama T. , Kurosaki M. , Maekawa S. , Yamashiro T. . & other authors ( 2004; ). Specific inhibition of hepatitis C virus replication by cyclosporin A. . Biochem Biophys Res Commun 313:, 42–47. [CrossRef] [PubMed]
    [Google Scholar]
  57. Nakagawa M. , Sakamoto N. , Tanabe Y. , Koyama T. , Itsui Y. , Takeda Y. , Chen C. H. , Kakinuma S. , Oooka S. . & other authors ( 2005; ). Suppression of hepatitis C virus replication by cyclosporin A is mediated by blockade of cyclophilins. . Gastroenterology 129:, 1031–1041. [CrossRef] [PubMed]
    [Google Scholar]
  58. Nanda S. K. , Herion D. , Liang T. J. . ( 2006; ). Src homology 3 domain of hepatitis C virus NS5A protein interacts with Bin1 and is important for apoptosis and infectivity. . Gastroenterology 130:, 794–809. [CrossRef] [PubMed]
    [Google Scholar]
  59. Paul D. , Hoppe S. , Saher G. , Krijnse-Locker J. , Bartenschlager R. . ( 2013; ). Morphological and biochemical characterization of the membranous hepatitis C virus replication compartment. . J Virol 87:, 10612–10627. [CrossRef] [PubMed]
    [Google Scholar]
  60. Pawlotsky J. M. . ( 2014; ). New hepatitis C therapies: the toolbox, strategies, and challenges. . Gastroenterology 146:, 1176–1192. [CrossRef] [PubMed]
    [Google Scholar]
  61. Penin F. , Brass V. , Appel N. , Ramboarina S. , Montserret R. , Ficheux D. , Blum H. E. , Bartenschlager R. , Moradpour D. . ( 2004; ). Structure and function of the membrane anchor domain of hepatitis C virus nonstructural protein 5A. . J Biol Chem 279:, 40835–40843. [CrossRef] [PubMed]
    [Google Scholar]
  62. Qi H. , Olson C. A. , Wu N. C. , Ke R. , Loverdo C. , Chu V. , Truong S. , Remenyi R. , Chen Z. . & other authors ( 2014; ). A quantitative high-resolution genetic profile rapidly identifies sequence determinants of hepatitis C viral fitness and drug sensitivity. . PLoS Pathog 10:, e1004064. [CrossRef] [PubMed]
    [Google Scholar]
  63. Qiu D. , Lemm J. A. , O’Boyle D. R. II , Sun J. H. , Nower P. T. , Nguyen V. , Hamann L. G. , Snyder L. B. , Deon D. H. . & other authors ( 2011; ). The effects of NS5A inhibitors on NS5A phosphorylation, polyprotein processing and localization. . J Gen Virol 92:, 2502–2511. [CrossRef] [PubMed]
    [Google Scholar]
  64. Quinkert D. , Bartenschlager R. , Lohmann V. . ( 2005; ). Quantitative analysis of the hepatitis C virus replication complex. . J Virol 79:, 13594–13605. [CrossRef] [PubMed]
    [Google Scholar]
  65. Quintavalle M. , Sambucini S. , Di Pietro C. , De Francesco R. , Neddermann P. . ( 2006; ). The α isoform of protein kinase CKI is responsible for hepatitis C virus NS5A hyperphosphorylation. . J Virol 80:, 11305–11312. [CrossRef] [PubMed]
    [Google Scholar]
  66. Quintavalle M. , Sambucini S. , Summa V. , Orsatti L. , Talamo F. , De Francesco R. , Neddermann P. . ( 2007; ). Hepatitis C virus NS5A is a direct substrate of casein kinase I-α, a cellular kinase identified by inhibitor affinity chromatography using specific NS5A hyperphosphorylation inhibitors. . J Biol Chem 282:, 5536–5544. [CrossRef] [PubMed]
    [Google Scholar]
  67. Reiss S. , Rebhan I. , Backes P. , Romero-Brey I. , Erfle H. , Matula P. , Kaderali L. , Poenisch M. , Blankenburg H. . & other authors ( 2011; ). Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. . Cell Host Microbe 9:, 32–45. [CrossRef] [PubMed]
    [Google Scholar]
  68. Reiss S. , Harak C. , Romero-Brey I. , Radujkovic D. , Klein R. , Ruggieri A. , Rebhan I. , Bartenschlager R. , Lohmann V. . ( 2013; ). The lipid kinase phosphatidylinositol-4 kinase III alpha regulates the phosphorylation status of hepatitis C virus NS5A. . PLoS Pathog 9:, e1003359. [CrossRef] [PubMed]
    [Google Scholar]
  69. Romero-Brey I. , Merz A. , Chiramel A. , Lee J. Y. , Chlanda P. , Haselman U. , Santarella-Mellwig R. , Habermann A. , Hoppe S. . & other authors ( 2012; ). Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. . PLoS Pathog 8:, e1003056. [CrossRef] [PubMed]
    [Google Scholar]
  70. Ross-Thriepland D. , Harris M. . ( 2014; ). Insights into the complexity and functionality of hepatitis C virus NS5A phosphorylation. . J Virol 88:, 1421–1432. [CrossRef] [PubMed]
    [Google Scholar]
  71. Ross-Thriepland D. , Amako Y. , Harris M. . ( 2014; ). The C terminus of NS5A domain II is a key determinant of hepatitis C virus genome replication, but is not required for virion assembly and release. . J Gen Virol 94:, 1009–1018. [CrossRef] [PubMed]
    [Google Scholar]
  72. Saeed M. , Scheel T. K. , Gottwein J. M. , Marukian S. , Dustin L. B. , Bukh J. , Rice C. M. . ( 2012; ). Efficient replication of genotype 3a and 4a hepatitis C virus replicons in human hepatoma cells. . Antimicrob Agents Chemother 56:, 5365–5373. [CrossRef] [PubMed]
    [Google Scholar]
  73. Schaller T. , Appel N. , Koutsoudakis G. , Kallis S. , Lohmann V. , Pietschmann T. , Bartenschlager R. . ( 2007; ). Analysis of hepatitis C virus superinfection exclusion by using novel fluorochrome gene-tagged viral genomes. . J Virol 81:, 4591–4603. [CrossRef] [PubMed]
    [Google Scholar]
  74. Tellinghuisen T. L. , Marcotrigiano J. , Gorbalenya A. E. , Rice C. M. . ( 2004; ). The NS5A protein of hepatitis C virus is a zinc metalloprotein. . J Biol Chem 279:, 48576–48587. [CrossRef] [PubMed]
    [Google Scholar]
  75. Tellinghuisen T. L. , Marcotrigiano J. , Rice C. M. . ( 2005; ). Structure of the zinc-binding domain of an essential component of the hepatitis C virus replicase. . Nature 435:, 374–379. [CrossRef] [PubMed]
    [Google Scholar]
  76. Tellinghuisen T. L. , Foss K. L. , Treadaway J. . ( 2008a; ). Regulation of hepatitis C virion production via phosphorylation of the NS5A protein. . PLoS Pathog 4:, e1000032. [CrossRef] [PubMed]
    [Google Scholar]
  77. Tellinghuisen T. L. , Foss K. L. , Treadaway J. C. , Rice C. M. . ( 2008b; ). Identification of residues required for RNA replication in domains II and III of the hepatitis C virus NS5A protein. . J Virol 82:, 1073–1083. [CrossRef] [PubMed]
    [Google Scholar]
  78. Verdegem D. , Badillo A. , Wieruszeski J. M. , Landrieu I. , Leroy A. , Bartenschlager R. , Penin F. , Lippens G. , Hanoulle X. . ( 2011; ). Domain 3 of NS5A protein from the hepatitis C virus has intrinsic α-helical propensity and is a substrate of cyclophilin A. . J Biol Chem 286:, 20441–20454. [CrossRef] [PubMed]
    [Google Scholar]
  79. Wakita T. , Pietschmann T. , Kato T. , Date T. , Miyamoto M. , Zhao Z. , Murthy K. , Habermann A. , Kräusslich H. G. . & other authors ( 2005; ). Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. . Nat Med 11:, 791–796. [CrossRef] [PubMed]
    [Google Scholar]
  80. Watashi K. , Hijikata M. , Hosaka M. , Yamaji M. , Shimotohno K. . ( 2003; ). Cyclosporin A suppresses replication of hepatitis C virus genome in cultured hepatocytes. . Hepatology 38:, 1282–1288. [CrossRef] [PubMed]
    [Google Scholar]
  81. Wolk B. , Buchele B. , Moradpour D. , Rice C. M. . ( 2008; ). A dynamic view of hepatitis C virus replication complexes. . J Virol 82:, 10519–10531.[CrossRef]
    [Google Scholar]
  82. Wose Kinge C. N. , Espiritu C. , Prabdial-Sing N. , Sithebe N. P. , Saeed M. , Rice C. M. . ( 2014; ). Hepatitis C virus genotype 5a subgenomic replicons for evaluation of direct-acting antiviral agents. . Antimicrob Agents Chemother 58:, 5386–5394. [CrossRef] [PubMed]
    [Google Scholar]
  83. Yu M. , Peng B. , Chan K. , Gong R. , Yang H. , Delaney W. IV , Cheng G. . ( 2014; ). Robust and persistent replication of the genotype 6a hepatitis C virus replicon in cell culture. . Antimicrob Agents Chemother 58:, 2638–2646. [CrossRef] [PubMed]
    [Google Scholar]
  84. Zech B. , Kurtenbach A. , Krieger N. , Strand D. , Blencke S. , Morbitzer M. , Salassidis K. , Cotten M. , Wissing J. . & other authors ( 2003; ). Identification and characterization of amphiphysin II as a novel cellular interaction partner of the hepatitis C virus NS5A protein. . J Gen Virol 84:, 555–560. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000009
Loading
/content/journal/jgv/10.1099/jgv.0.000009
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error