1887

Abstract

Turnip mosaic virus (TuMV) is a potyvirus that is transmitted by aphids and infects a wide range of plant species. We investigated the evolution of this pathogen by collecting 32 isolates of TuMV, mostly from Brassicaceae plants, in Australia and New Zealand. We performed a variety of sequence-based phylogenetic and population genetic analyses of the complete genomic sequences and of three non-recombinogenic regions of those sequences. The substitution rates, divergence times and phylogeographical patterns of the virus populations were estimated. Six inter- and seven intralineage recombination-type patterns were found in the genomes of the Australian and New Zealand isolates, and all were novel. Only one recombination-type pattern has been found in both countries. The Australian and New Zealand populations were genetically different, and were different from the European and Asian populations. Our Bayesian coalescent analyses, based on a combination of novel and published sequence data from three non-recombinogenic protein-encoding regions, showed that TuMV probably started to migrate from Europe to Australia and New Zealand more than 80 years ago, and that distinct populations arose as a result of evolutionary drivers such as recombination. The basal-B2 subpopulation in Australia and New Zealand seems to be older than those of the world-B2 and -B3 populations. To our knowledge, our study presents the first population genetic analysis of TuMV in Australia and New Zealand. We have shown that the time of migration of TuMV correlates well with the establishment of agriculture and migration of Europeans to these countries.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000007
2015-03-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/3/701.html?itemId=/content/journal/jgv/10.1099/jgv.0.000007&mimeType=html&fmt=ahah

References

  1. Bielejec F., Rambaut A., Suchard M. A., Lemey P.. ( 2011;). spread: spatial phylogenetic reconstruction of evolutionary dynamics. . Bioinformatics 27:, 2910–2912. [CrossRef][PubMed]
    [Google Scholar]
  2. Chamberlain E. E.. ( 1936;). Turnip-mosaic. A virus disease of crucifers. . New Zeal J Agr Res 53:, 321–330.
    [Google Scholar]
  3. Chen J., Zheng H. Y., Chen J. P., Adams M. J.. ( 2002;). Characterisation of a potyvirus and a potexvirus from Chinese scallion. . Arch Virol 147:, 683–693. [CrossRef][PubMed]
    [Google Scholar]
  4. Chen J., Lu Y.-W., Shi Y.-H., Adams M. J., Chen J.-P.. ( 2006;). Complete nucleotide sequence of the genomic RNA of Narcissus yellow stripe virus from Chinese narcissus in Zhangzhou city, China. . Arch Virol 151:, 1673–1677. [CrossRef][PubMed]
    [Google Scholar]
  5. Chung B. Y.-W., Miller W. A., Atkins J. F., Firth A. E.. ( 2008;). An overlapping essential gene in the Potyviridae. . Proc Natl Acad Sci U S A 105:, 5897–5902. [CrossRef][PubMed]
    [Google Scholar]
  6. Clark M. F., Adams A. N.. ( 1977;). Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. . J Gen Virol 34:, 475–483. [CrossRef][PubMed]
    [Google Scholar]
  7. Drummond A. J., Pybus O. G., Rambaut A., Forsberg R., Rodrigo A. G.. ( 2003;). Measurably evolving populations. . Trends Ecol Evol 18:, 481–488. [CrossRef]
    [Google Scholar]
  8. Drummond A. J., Ho S. Y. W., Phillips M. J., Rambaut A.. ( 2006;). Relaxed phylogenetics and dating with confidence. . PLoS Biol 4:, e88. [CrossRef][PubMed]
    [Google Scholar]
  9. Drummond A. J., Suchard M. A., Xie D., Rambaut A.. ( 2012;). Bayesian phylogenetics with BEAUti and the beast 1.7. . Mol Biol Evol 29:, 1969–1973. [CrossRef][PubMed]
    [Google Scholar]
  10. Duchêne S., Holmes E. C., Ho S. Y. W.. ( 2014;). Analyses of evolutionary dynamics in viruses are hindered by a time-dependent bias in rate estimates. . Proc Biol Sci 281:, 20140732. [CrossRef][PubMed]
    [Google Scholar]
  11. Fletcher J. D., Lister R. A., Bulman S. R., Heenan P. B.. ( 2010;). First record of Turnip mosaic virus in Pachycladon spp. (Brassicaceae): an endangered native plant species in New Zealand. . Australas Plant Dis Notes 5:, 9–10. [CrossRef]
    [Google Scholar]
  12. Fuji S., Nakamae H.. ( 1999;). Complete nucleotide sequence of the genomic RNA of a Japanese yam mosaic virus, a new potyvirus in Japan. . Arch Virol 144:, 231–240. [CrossRef][PubMed]
    [Google Scholar]
  13. Fuji S., Nakamae H.. ( 2000;). Complete nucleotide sequence of the genomic RNA of a mild strain of Japanese yam mosaic potyvirus. . Arch Virol 145:, 635–640. [CrossRef][PubMed]
    [Google Scholar]
  14. García-Arenal F., Fraile A., Malpica J. M.. ( 2001;). Variability and genetic structure of plant virus populations. . Annu Rev Phytopathol 39:, 157–186. [CrossRef][PubMed]
    [Google Scholar]
  15. Gibbs A. J., Ohshima K.. ( 2010;). Potyviruses and the digital revolution. . Annu Rev Phytopathol 48:, 205–223. [CrossRef][PubMed]
    [Google Scholar]
  16. Gibbs A. J., Gibbs M., Ohshima K., García-Arenal F.. ( 2008a;). More about plant virus evolution; past, present and future. . In Origin and Evolution of Viruses, , 2nd edn., pp. 229–250. Edited by Domingo E., Parrish C. R., Holland J. J... San Diego:: Elsevier Academic Press;. [CrossRef]
    [Google Scholar]
  17. Gibbs A. J., Mackenzie A. M., Wei K.-J., Gibbs M. J.. ( 2008b;). The potyviruses of Australia. . Arch Virol 153:, 1411–1420. [CrossRef][PubMed]
    [Google Scholar]
  18. Gibbs A. J., Fargette D., García-Arenal F., Gibbs M. J.. ( 2010;). Time – the emerging dimension of plant virus studies. . J Gen Virol 91:, 13–22. [CrossRef][PubMed]
    [Google Scholar]
  19. Gibbs M. J., Armstrong J. S., Gibbs A. J.. ( 2000;). Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. . Bioinformatics 16:, 573–582. [CrossRef][PubMed]
    [Google Scholar]
  20. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef][PubMed]
    [Google Scholar]
  21. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  22. Huson D. H., Bryant D.. ( 2006;). Application of phylogenetic networks in evolutionary studies. . Mol Biol Evol 23:, 254–267. [CrossRef][PubMed]
    [Google Scholar]
  23. Jenner C. E., Sánchez F., Nettleship S. B., Foster G. D., Ponz F., Walsh J. A.. ( 2000;). The cylindrical inclusion gene of Turnip mosaic virus encodes a pathogenic determinant to the Brassica resistance gene TuRB01.. Mol Plant Microbe Interact 13:, 1102–1108. [CrossRef][PubMed]
    [Google Scholar]
  24. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  25. King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J.. ( 2012;). Family Potyviridae. . In Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses, pp. 1069–1077. Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J... San Diego:: Elsevier Academic Press;.
    [Google Scholar]
  26. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  27. Lecoq H., Wipf-Scheibel C., Chandeysson C., Lê Van A., Fabre F., Desbiez C.. ( 2009;). Molecular epidemiology of Zucchini yellow mosaic virus in France: an historical overview. . Virus Res 141:, 190–200. [CrossRef][PubMed]
    [Google Scholar]
  28. Lefeuvre P., Martin D. P., Harkins G., Lemey P., Gray A. J. A., Meredith S., Lakay F., Monjane A., Lett J.-M.. & other authors ( 2010;). The spread of tomato yellow leaf curl virus from the Middle East to the world. . PLoS Pathog 6:, e1001164. [CrossRef][PubMed]
    [Google Scholar]
  29. Lemey P., Rambaut A., Drummond A. J., Suchard M. A.. ( 2009;). Bayesian phylogeography finds its roots. . PLOS Comput Biol 5:, e1000520. [CrossRef][PubMed]
    [Google Scholar]
  30. Librado P., Rozas J.. ( 2009;). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. . Bioinformatics 25:, 1451–1452. [CrossRef][PubMed]
    [Google Scholar]
  31. Lin S.-Q., Shen J.-G., Gao F.-L., Cai W., Huang Z., Xie L.-Y., Wu Z.-J.. ( 2012;). Complete genome sequence of narcissus late season yellows virus infecting Chinese narcissus in China. . Arch Virol 157:, 1821–1824. [CrossRef][PubMed]
    [Google Scholar]
  32. Luo A., Qiao H., Zhang Y., Shi W., Ho S. Y. W., Xu W., Zhang A., Zhu C.. ( 2010;). Performance of criteria for selecting evolutionary models in phylogenetics: a comprehensive study based on simulated datasets. . BMC Evol Biol 10:, 242. [CrossRef][PubMed]
    [Google Scholar]
  33. Martin D., Rybicki E.. ( 2000;). rdp: detection of recombination amongst aligned sequences. . Bioinformatics 16:, 562–563. [CrossRef][PubMed]
    [Google Scholar]
  34. Martin D. P., Lemey P., Lott M., Moulton V., Posada D., Lefeuvre P.. ( 2010;). rdp3: a flexible and fast computer program for analyzing recombination. . Bioinformatics 26:, 2462–2463. [CrossRef][PubMed]
    [Google Scholar]
  35. Molak M., Lorenzen E. D., Shapiro B., Ho S. Y. W.. ( 2013;). Phylogenetic estimation of timescales using ancient DNA: the effects of temporal sampling scheme and uncertainty in sample ages. . Mol Biol Evol 30:, 253–262. [CrossRef][PubMed]
    [Google Scholar]
  36. Nguyen H. D., Tran H. T. N., Ohshima K.. ( 2013a;). Genetic variation of the Turnip mosaic virus population of Vietnam: a case study of founder, regional and local influences. . Virus Res 171:, 138–149. [CrossRef][PubMed]
    [Google Scholar]
  37. Nguyen H. D., Tomitaka Y., Ho S. Y. W., Duchêne S., Vetten H.-J., Lesemann D., Walsh J. A., Gibbs A. J., Ohshima K.. ( 2013b;). Turnip mosaic potyvirus probably first spread to Eurasian brassica crops from wild orchids about 1000 years ago. . PLoS ONE 8:, e55336. [CrossRef][PubMed]
    [Google Scholar]
  38. Ochoa Corona F. M., Lebas B. S. M., Elliott D. R., Tang J. Z., Alexander B. J. R.. ( 2007;). New host records and new host family range for Turnip mosaic virus in New Zealand. . Australas Plant Dis Notes 2:, 127–130. [CrossRef]
    [Google Scholar]
  39. Ogawa T., Tomitaka Y., Nakagawa A., Ohshima K.. ( 2008;). Genetic structure of a population of Potato virus Y inducing potato tuber necrotic ringspot disease in Japan; comparison with North American and European populations. . Virus Res 131:, 199–212. [CrossRef][PubMed]
    [Google Scholar]
  40. Ohshima K., Yamaguchi Y., Hirota R., Hamamoto T., Tomimura K., Tan Z., Sano T., Azuhata F., Walsh J. A.. & other authors ( 2002;). Molecular evolution of Turnip mosaic virus: evidence of host adaptation, genetic recombination and geographical spread. . J Gen Virol 83:, 1511–1521.[PubMed]
    [Google Scholar]
  41. Ohshima K., Tomitaka Y., Wood J. T., Minematsu Y., Kajiyama H., Tomimura K., Gibbs A. J.. ( 2007;). Patterns of recombination in turnip mosaic virus genomic sequences indicate hotspots of recombination. . J Gen Virol 88:, 298–315. [CrossRef][PubMed]
    [Google Scholar]
  42. Ohshima K., Akaishi S., Kajiyama H., Koga R., Gibbs A. J.. ( 2010;). Evolutionary trajectory of turnip mosaic virus populations adapting to a new host. . J Gen Virol 91:, 788–801. [CrossRef][PubMed]
    [Google Scholar]
  43. Page R. D. M.. ( 1996;). TreeView: an application to display phylogenetic trees on personal computers. . Comput Appl Biosci 12:, 357–358.[PubMed]
    [Google Scholar]
  44. Posada D., Crandall K. A.. ( 2001;). Evaluation of methods for detecting recombination from DNA sequences: computer simulations. . Proc Natl Acad Sci U S A 98:, 13757–13762. [CrossRef][PubMed]
    [Google Scholar]
  45. Ramsden C., Holmes E. C., Charleston M. A.. ( 2009;). Hantavirus evolution in relation to its rodent and insectivore hosts: no evidence for codivergence. . Mol Biol Evol 26:, 143–153. [CrossRef][PubMed]
    [Google Scholar]
  46. Rocha C. S., Castillo-Urquiza G. P., Lima A. T. M., Silva F. N., Xavier C. A. D., Hora-Júnior B. T., Beserra-Júnior J. E. A., Malta A. W. O., Martin D. P.. & other authors ( 2013;). Brazilian begomovirus populations are highly recombinant, rapidly evolving, and segregated based on geographical location. . J Virol 87:, 5784–5799. [CrossRef][PubMed]
    [Google Scholar]
  47. Salminen M. O., Carr J. K., Burke D. S., McCutchan F. E.. ( 1995;). Identification of breakpoints in intergenotypic recombinants of HIV type 1 by bootscanning. . AIDS Res Hum Retroviruses 11:, 1423–1425. [CrossRef][PubMed]
    [Google Scholar]
  48. Samuel G.. ( 1931;). Summary of plant disease records in south Australia for the two years ending June 30th, 1930. . J Dep Agric S Aust 34:, 746.
    [Google Scholar]
  49. Sawyer, S. A. (1999). geneconv: a computer package for the statistical detection of gene conversion. Distributed by the author. Department of Mathematics. Washington University, St Louis. Available at http://www.math.wustl.edu/~sawyer.
  50. Schliep K. P.. ( 2011;). phangorn: Phylogenetic analysis in r. . Bioinformatics 27:, 592–593. [CrossRef][PubMed]
    [Google Scholar]
  51. Schwarz R., Dayhoff M.. ( 1979;). Matrices for detecting distant relationships. . In Atlas of Protein Sequences, pp. 353–358. Edited by Dayhoff M... Washington, DC:: National Biomedical Research Foundation;.
    [Google Scholar]
  52. Schwinghamer M. W., Schilg M. A., Walsh J. A., Bambach R. W., Cossu R. M., Bambridge J. M., Hind-Lanoiselet T. L., McCorkell B. E., Cross P.. ( 2014;). Turnip mosaic virus: potential for crop losses in the grain belt of New South Wales, Australia. . Australas Plant Pathol 43:, 663–678. [CrossRef]
    [Google Scholar]
  53. Seo J. K., Ohshima K., Lee H. G., Son M., Choi H. S., Lee S. H., Sohn S. H., Kim K. H.. ( 2009;). Molecular variability and genetic structure of the population of soybean mosaic virus based on the analysis of complete genome sequences. . Virology 393:, 91–103. [CrossRef][PubMed]
    [Google Scholar]
  54. Smith J. M.. ( 1992;). Analyzing the mosaic structure of genes. . J Mol Evol 34:, 126–129. [CrossRef][PubMed]
    [Google Scholar]
  55. Suchard M. A., Weiss R. E., Sinsheimer J. S.. ( 2001;). Bayesian selection of continuous-time Markov chain evolutionary models. . Mol Biol Evol 18:, 1001–1013. [CrossRef][PubMed]
    [Google Scholar]
  56. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: Molecular Evolutionary Genetics Analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  57. Tomimura K., Gibbs A. J., Jenner C. E., Walsh J. A., Ohshima K.. ( 2003;). The phylogeny of Turnip mosaic virus; comparisons of 38 genomic sequences reveal a Eurasian origin and a recent ‘emergence’ in east Asia. . Mol Ecol 12:, 2099–2111. [CrossRef][PubMed]
    [Google Scholar]
  58. Tomimura K., Spăk J., Katis N., Jenner C. E., Walsh J. A., Gibbs A. J., Ohshima K.. ( 2004;). Comparisons of the genetic structure of populations of Turnip mosaic virus in West and East Eurasia. . Virology 330:, 408–423. [CrossRef][PubMed]
    [Google Scholar]
  59. Tomitaka Y., Ohshima K.. ( 2006;). A phylogeographical study of the Turnip mosaic virus population in East Asia reveals an ‘emergent’ lineage in Japan. . Mol Ecol 15:, 4437–4457. [CrossRef][PubMed]
    [Google Scholar]
  60. Tomitaka Y., Yamashita T., Ohshima K.. ( 2007;). The genetic structure of populations of Turnip mosaic virus in Kyushu and central Honshu, Japan. . J Gen Plant Pathol 73:, 197–208. [CrossRef]
    [Google Scholar]
  61. Visser J. C., Bellstedt D. U., Pirie M. D.. ( 2012;). The recent recombinant evolution of a major crop pathogen, Potato virus Y. . PLoS ONE 7:, e50631. [CrossRef][PubMed]
    [Google Scholar]
  62. Wace N.. ( 1985;). The isolated continent. . In Pests and Parasites as Migrants, pp. 3–22. Edited by Gibbs A., Meischke R... Cambridge:: Cambridge University Press;.
    [Google Scholar]
  63. Walsh J. A., Jenner C. E.. ( 2002;). Turnip mosaic virus and the quest for durable resistance. . Mol Plant Pathol 3:, 289–300. [CrossRef][PubMed]
    [Google Scholar]
  64. Weiller G. F.. ( 1998;). Phylogenetic profiles: a graphical method for detecting genetic recombinations in homologous sequences. . Mol Biol Evol 15:, 326–335. [CrossRef][PubMed]
    [Google Scholar]
  65. Wertheim J. O., Kosakovsky Pond S. L.. ( 2011;). Purifying selection can obscure the ancient age of viral lineages. . Mol Biol Evol 28:, 3355–3365. [CrossRef][PubMed]
    [Google Scholar]
  66. Wylie S. J., Li H., Sivasithamparam K., Jones M. G. K.. ( 2014;). Complete genome analysis of three isolates of narcissus late season yellows virus and two of narcissus yellow stripe virus: three species or one?. Arch Virol 159:, 1521–1525. [CrossRef][PubMed]
    [Google Scholar]
  67. Yasaka R., Nguyen H. D., Ho S. Y. W., Duchêne S., Korkmaz S., Katis N., Takahashi H., Gibbs A. J., Ohshima K.. ( 2014;). The temporal evolution and global spread of Cauliflower mosaic virus, a plant pararetrovirus. . PLoS ONE 9:, e85641. [CrossRef][PubMed]
    [Google Scholar]
  68. Zubareva I. A., Vinogradova S. V., Gribova T. N., Monakhos S. G., Skryabin K. G., Ignatov A. N.. ( 2013;). Genetic diversity of turnip mosaic virus and the mechanism of its transmission by Brassica seeds. . Dokl Biochem Biophys 450:, 119–122. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000007
Loading
/content/journal/jgv/10.1099/jgv.0.000007
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error