1887

Abstract

Analysis of virus-derived small RNAs with high-throughput sequencing has been successful for detecting novel viruses in plants and invertebrates. However, the applicability of this method has not been demonstrated in fungi, although fungi were among the first organisms reported to utilize RNA silencing. Here, we used virus-infected isolates of the fungal species complex as a model system to test whether mycovirus genome segments can be detected with small RNA deep sequencing. Species of the genus are some of the most devastating forest pathogens in boreal forests. These fungi cause wood decay and are commonly infected with species of the family and the unassigned virus species . Small RNA deep sequencing allowed the simultaneous detection of all eight double-stranded RNA virus strains known to be present in the tested samples and one putative mitovirus species (family ) with a single-stranded RNA genome, designated here as . Prior to this study, no members of the family had been described as infecting species of . Quantification of viral double- and single-stranded RNA with quantitative PCR indicated that co-infecting viral species and viruses with segmented genomes can be detected with small RNA deep sequencing despite vast differences in the amount of RNA. This is the first study demonstrating the usefulness of this method for detecting fungal viruses. Moreover, the results suggest that viral genomes are processed into small RNAs by different species of .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000003
2015-03-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/3/714.html?itemId=/content/journal/jgv/10.1099/jgv.0.000003&mimeType=html&fmt=ahah

References

  1. Abascal F., Zardoya R., Posada D.. ( 2005;). ProtTest: selection of best-fit models of protein evolution. . Bioinformatics 21:, 2104–2105. [CrossRef][PubMed]
    [Google Scholar]
  2. Al Rwahnih M., Daubert S., Golino D., Rowhani A.. ( 2009;). Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus. . Virology 387:, 395–401. [CrossRef][PubMed]
    [Google Scholar]
  3. Al Rwahnih M., Daubert S., Urbez-Torres J. R., Cordero F., Rowhani A.. ( 2011;). Deep sequencing evidence from single grapevine plants reveals a virome dominated by mycoviruses. . Arch Virol 156:, 397–403. [CrossRef][PubMed]
    [Google Scholar]
  4. Bi Y., Tugume A. K., Valkonen J. P. T.. ( 2012;). Small-RNA deep sequencing reveals Arctium tomentosum as a natural host of Alstroemeria virus X and a new putative Emaravirus. . PLoS ONE 7:, e42758. [CrossRef][PubMed]
    [Google Scholar]
  5. Bologna N. G., Voinnet O.. ( 2014;). The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. . Annu Rev Plant Biol 65:, 473–503. [CrossRef][PubMed]
    [Google Scholar]
  6. Chang S. S., Zhang Z., Liu Y.. ( 2012;). RNA interference pathways in fungi: mechanisms and functions. . Annu Rev Microbiol 66:, 305–323. [CrossRef][PubMed]
    [Google Scholar]
  7. Chiba S., Salaipeth L., Lin Y.-H., Sasaki A., Kanematsu S., Suzuki N.. ( 2009;). A novel bipartite double-stranded RNA mycovirus from the white root rot fungus Rosellinia necatrix: molecular and biological characterization, taxonomic considerations, and potential for biological control. . J Virol 83:, 12801–12812. [CrossRef][PubMed]
    [Google Scholar]
  8. Chiba S., Kondo H., Tani A., Saisho D., Sakamoto W., Kanematsu S., Suzuki N.. ( 2011;). Widespread endogenization of genome sequences of non-retroviral RNA viruses into plant genomes. . PLoS Pathog 7:, e1002146. [CrossRef][PubMed]
    [Google Scholar]
  9. Chiba S., Lin Y. H., Kondo H., Kanematsu S., Suzuki N.. ( 2013a;). Effects of defective interfering RNA on symptom induction by, and replication of, a novel partitivirus from a phytopathogenic fungus, Rosellinia necatrix. . J Virol 87:, 2330–2341. [CrossRef][PubMed]
    [Google Scholar]
  10. Chiba S., Lin Y. H., Kondo H., Kanematsu S., Suzuki N.. ( 2013b;). A novel victorivirus from a phytopathogenic fungus, Rosellinia necatrix, is infectious as particles and targeted by RNA silencing. . J Virol 87:, 6727–6738. [CrossRef][PubMed]
    [Google Scholar]
  11. Coetzee B., Freeborough M. J., Maree H. J., Celton J. M., Rees D. J. G., Burger J. T.. ( 2010;). Deep sequencing analysis of viruses infecting grapevines: virome of a vineyard. . Virology 400:, 157–163. [CrossRef][PubMed]
    [Google Scholar]
  12. Drinnenberg I. A., Weinberg D. E., Xie K. T., Mower J. P., Wolfe K. H., Fink G. R., Bartel D. P.. ( 2009;). RNAi in budding yeast. . Science 326:, 544–550. [CrossRef][PubMed]
    [Google Scholar]
  13. Drinnenberg I. A., Fink G. R., Bartel D. P.. ( 2011;). Compatibility with killer explains the rise of RNAi-deficient fungi. . Science 333:, 1592. [CrossRef][PubMed]
    [Google Scholar]
  14. Feldman T. S., Morsy M. R., Roossinck M. J.. ( 2012;). Are communities of microbial symbionts more diverse than communities of macrobial hosts?. Fungal Biol 116:, 465–477. [CrossRef][PubMed]
    [Google Scholar]
  15. Hammond T. M., Andrewski M. D., Roossinck M. J., Keller N. P.. ( 2008;). Aspergillus mycoviruses are targets and suppressors of RNA silencing. . Eukaryot Cell 7:, 350–357. [CrossRef][PubMed]
    [Google Scholar]
  16. Heinze C.. ( 2012;). A novel mycovirus from Clitocybe odora. . Arch Virol 157:, 1831–1834. [CrossRef][PubMed]
    [Google Scholar]
  17. Hillman B. I., Cai G.. ( 2013;). The family Narnaviridae: simplest of RNA viruses. . Adv Virus Res 86:, 149–176. [CrossRef][PubMed]
    [Google Scholar]
  18. Hong Y., Dover S. L., Cole T. E., Brasier C. M., Buck K. W.. ( 1999;). Multiple mitochondrial viruses in an isolate of the Dutch elm disease fungus Ophiostoma novo-ulmi. . Virology 258:, 118–127. [CrossRef][PubMed]
    [Google Scholar]
  19. Hu Y., Stenlid J., Elfstrand M., Olson Å.. ( 2013;). Evolution of RNA interference proteins Dicer and Argonaute in Basidiomycota. . Mycologia 105:, 1489–1498. [CrossRef][PubMed]
    [Google Scholar]
  20. Hyder R., Pennanen T., Hamberg L., Vainio E. J., Piri T., Hantula J.. ( 2013;). Two viruses of Heterobasidion confer beneficial, cryptic or detrimental effects to their hosts in different situations. . Fungal Ecol 6:, 387–396. [CrossRef]
    [Google Scholar]
  21. Ihrmark, K. (2001). Double-stranded RNA elements in the root rot fungus Heterobasidion annosum. PhD dissertation, Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Uppsala. ISBN 91–576–6094–8.
  22. Ihrmark K., Johannesson H., Stenström E., Stenlid J.. ( 2002;). Transmission of double-stranded RNA in Heterobasidion annosum. . Fungal Genet Biol 36:, 147–154. [CrossRef][PubMed]
    [Google Scholar]
  23. Ihrmark K., Stenström E., Stenlid J.. ( 2004;). Double-stranded RNA transmission through basidiospores of Heterobasidion annosum. . Mycol Res 108:, 149–153. [CrossRef][PubMed]
    [Google Scholar]
  24. Jurvansuu J., Kashif M., Vaario L., Vainio E. J., Hantula J.. ( 2014;). Partitiviruses of a fungal forest pathogen have species-specific quantities of genome segments and transcripts. . Virology 462-463:, 25–33. [CrossRef][PubMed]
    [Google Scholar]
  25. Kashif M., Pietilä S., Artola K., Jones R. A. C., Tugume A. K., Mäkinen V., Valkonen J. P. T.. ( 2012;). Detection of viruses in sweetpotato from Honduras and Guatemala augmented by deep-sequencing of small-RNAs. . Plant Dis 96:, 1430–1437. [CrossRef]
    [Google Scholar]
  26. Kashif M., Hyder R., De Vega Perez D., Hantula J., Vainio E. J.. ( 2015;). Heterobasidion wood decay fungi host diverse and globally distributed viruses related to Helicobasidium mompa partitivirus V70. . Virus Res 195: 119–123. [CrossRef][PubMed]
    [Google Scholar]
  27. King A. M., Adams M. J., Lefkowitz E. J., Carstens E. B.. ( 2012;). Virus Taxonomy: IXth Report of the International Committee on Taxonomy of Viruses, vol. 9. San Diego, CA:: Elsevier Academic Press;.
    [Google Scholar]
  28. Kreuze J. F., Perez A., Untiveros M., Quispe D., Fuentes S., Barker I., Simon R.. ( 2009;). Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. . Virology 388:, 1–7. [CrossRef][PubMed]
    [Google Scholar]
  29. Lakshman D. K., Jian J., Tavantzis S. M.. ( 1998;). A double-stranded RNA element from a hypovirulent strain of Rhizoctonia solani occurs in DNA form and is genetically related to the pentafunctional AROM protein of the shikimate pathway. . Proc Natl Acad Sci U S A 95:, 6425–6429. [CrossRef][PubMed]
    [Google Scholar]
  30. Lambden P. R., Cooke S. J., Caul E. O., Clarke I. N.. ( 1992;). Cloning of noncultivatable human rotavirus by single primer amplification. . J Virol 66:, 1817–1822.[PubMed]
    [Google Scholar]
  31. Lehr N. A., Adomas A., Asiegbu F. O., Hampp R., Tarkka M. T.. ( 2009;). WS-5995 B, an antifungal agent inducing differential gene expression in the conifer pathogen Heterobasidion annosum but not in Heterobasidion abietinum. . Appl Microbiol Biotechnol 85:, 347–358. [CrossRef][PubMed]
    [Google Scholar]
  32. Li H., Ruan J., Durbin R.. ( 2008;). Mapping short DNA sequencing reads and calling variants using mapping quality scores. . Genome Res 18:, 1851–1858. [CrossRef][PubMed]
    [Google Scholar]
  33. Lin Y. H., Chiba S., Tani A., Kondo H., Sasaki A., Kanematsu S., Suzuki N.. ( 2012;). A novel quadripartite dsRNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix. . Virology 426:, 42–50. [CrossRef][PubMed]
    [Google Scholar]
  34. Liu H., Fu Y., Jiang D., Li G., Xie J., Cheng J., Peng Y., Ghabrial S. A., Yi X.. ( 2010;). Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes. . J Virol 84:, 11876–11887. [CrossRef][PubMed]
    [Google Scholar]
  35. Márquez L. M., Redman R. S., Rodriguez R. J., Roossinck M. J.. ( 2007;). A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. . Science 315:, 513–515. [CrossRef][PubMed]
    [Google Scholar]
  36. Martínez-Álvarez P., Vainio E. J., Botella L., Hantula J., Diez J. J.. ( 2014;). Three mitovirus strains infecting a single isolate of Fusarium circinatum are the first putative members of the family Narnaviridae detected in a fungus of the genus Fusarium. . Arch Virol 159:, 2153–2155. [CrossRef][PubMed]
    [Google Scholar]
  37. Meister G., Tuschl T.. ( 2004;). Mechanisms of gene silencing by double-stranded RNA. . Nature 431:, 343–349. [CrossRef][PubMed]
    [Google Scholar]
  38. Morris T. J., Dodds J. A.. ( 1979;). Isolation and analysis of double-stranded RNA from virus-infected plant and fungal tissue. . Phytopathology 69:, 854–858. [CrossRef]
    [Google Scholar]
  39. Mukasa S. B., Rubaihayo P. R., Valkonen J. P. T.. ( 2006;). Interactions between a crinivirus, an ipomovirus and a potyvirus in coinfected sweetpotato plants. . Plant Pathol 55:, 458–467. [CrossRef]
    [Google Scholar]
  40. Nibert M. L., Tang J., Xie J., Collier A. M., Ghabrial S. A., Baker T. S., Tao Y. J.. ( 2013;). 3D structures of fungal partitiviruses. . Adv Virus Res 86:, 59–85. [CrossRef][PubMed]
    [Google Scholar]
  41. Nibert M. L., Ghabrial S. A., Maiss E., Lesker T., Vainio E. J., Jiang D., Suzuki N.. ( 2014;). Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. . Virus Res 188:, 128–141. [CrossRef][PubMed]
    [Google Scholar]
  42. Olson Å., Aerts A., Asiegbu F., Belbahri L., Bouzid O., Broberg A., Canbäck B., Coutinho P. M., Cullen D.. & other authors ( 2012;). Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen. . New Phytol 194:, 1001–1013. [CrossRef][PubMed]
    [Google Scholar]
  43. Osaki H., Nakamura H., Sasaki A., Matsumoto N., Yoshida K.. ( 2006;). An endornavirus from a hypovirulent strain of the violet root rot fungus, Helicobasidium mompa. . Virus Res 118:, 143–149. [CrossRef][PubMed]
    [Google Scholar]
  44. Pantaleo V., Saldarelli P., Miozzi L., Giampetruzzi A., Gisel A., Moxon S., Dalmay T., Bisztray G., Burgyan J.. ( 2010;). Deep sequencing analysis of viral short RNAs from an infected Pinot Noir grapevine. . Virology 408:, 49–56. [CrossRef][PubMed]
    [Google Scholar]
  45. Poolpol P., Inouye T.. ( 1986;). Enhancement of cucumber mosaic virus multiplication by zucchini yellow mosaic virus in doubly infected cucumber plants. . Ann Phytopathol Soc Jpn 52:, 22–30. [CrossRef]
    [Google Scholar]
  46. Romano N., Macino G.. ( 1992;). Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. . Mol Microbiol 6:, 3343–3353. [CrossRef][PubMed]
    [Google Scholar]
  47. Schoebel C. N., Zoller S., Rigling D.. ( 2014;). Detection and genetic characterisation of a novel mycovirus in Hymenoscyphus fraxineus, the causal agent of ash dieback. . Infect Genet Evol 28:, 78–86. [CrossRef][PubMed]
    [Google Scholar]
  48. Segers G. C., Zhang X., Deng F., Sun Q., Nuss D. L.. ( 2007;). Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. . Proc Natl Acad Sci U S A 104:, 12902–12906. [CrossRef][PubMed]
    [Google Scholar]
  49. Stenlid J., Redfern D. B.. ( 1998;). Spread within the tree and stand. . In Heterobasidion annosum: Biology, Ecology, Impact and Control, pp. 125–141. Edited by Woodward S., Stenlid J., Karjalainen R., Hüttermann A... Wallingford, UK:: CAB International;.
    [Google Scholar]
  50. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  51. Tijsterman M., Ketting R. F., Plasterk R. H.. ( 2002;). The genetics of RNA silencing. . Annu Rev Genet 36:, 489–519. [CrossRef][PubMed]
    [Google Scholar]
  52. Tuomivirta T. T., Hantula J.. ( 2003;). Gremmeniella abietina mitochondrial RNA virus S1 is phylogenetically related to the members of the genus Mitovirus. . Arch Virol 148:, 2429–2436. [CrossRef][PubMed]
    [Google Scholar]
  53. Tuomivirta T. T., Uotila A., Hantula J.. ( 2002;). Two independent double-stranded RNA patterns occur in the Finnish Gremmeniella abietina var. abietina type A. . Forest Pathol 32:, 197–205. [CrossRef]
    [Google Scholar]
  54. Vainio E. J., Korhonen K., Tuomivirta T. T., Hantula J.. ( 2010;). A novel putative partitivirus of the saprotrophic fungus Heterobasidion ecrustosum infects pathogenic species of the Heterobasidion annosum complex. . Fungal Biol 114:, 955–965. [CrossRef][PubMed]
    [Google Scholar]
  55. Vainio E. J., Keriö S., Hantula J.. ( 2011a;). Description of a new putative virus infecting the conifer pathogenic fungus Heterobasidion parviporum with resemblance to Heterobasidion annosum P-type partitivirus. . Arch Virol 156:, 79–86. [CrossRef][PubMed]
    [Google Scholar]
  56. Vainio E. J., Hakanpää J., Dai Y.-C., Hansen E., Korhonen K., Hantula J.. ( 2011b;). Species of Heterobasidion host a diverse pool of partitiviruses with global distribution and interspecies transmission. . Fungal Biol 115:, 1234–1243. [CrossRef][PubMed]
    [Google Scholar]
  57. Vainio E. J., Hyder R., Aday G., Hansen E., Piri T., Doğmuş-Lehtijärvi T., Lehtijärvi A., Korhonen K., Hantula J.. ( 2012;). Population structure of a novel putative mycovirus infecting the conifer root-rot fungus Heterobasidion annosum sensu lato. . Virology 422:, 366–376. [CrossRef][PubMed]
    [Google Scholar]
  58. Vainio E. J., Piri T., Hantula J.. ( 2013a;). Virus community dynamics in the conifer pathogenic fungus Heterobasidion parviporum following an artificial introduction of a partitivirus. . Microb Ecol 65:, 28–38. [CrossRef][PubMed]
    [Google Scholar]
  59. Vainio E. J., Capretti P., Motta E., Hantula J.. ( 2013b;). Molecular characterization of HetRV8-ir1, a partitivirus of the invasive conifer pathogenic fungus Heterobasidion irregulare. . Arch Virol 158:, 1613–1615. [CrossRef][PubMed]
    [Google Scholar]
  60. Vainio E. J., Müller M. M., Korhonen K., Piri T., Hantula J.. ( 2014;). Viruses accumulate in aging infection centers of a fungal forest pathogen. . ISME J doi:10.1038/ismej.2014.145 [Epub ahead of print]. [CrossRef][PubMed]
    [Google Scholar]
  61. White T. J., Bruns T., Lee S., Taylor J. W.. ( 1990;). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. . In PCR Protocols – a Guide to Methods and Applications, pp. 315–322. Edited by Innis M., Gelfand D. H., Sninsky J. J., White T. J... San Diego, CA:: Academic Press;. [CrossRef]
    [Google Scholar]
  62. Wu Q., Luo Y., Lu R., Lau N., Lai E. C., Li W. X., Ding S. W.. ( 2010;). Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. . Proc Natl Acad Sci U S A 107:, 1606–1611. [CrossRef][PubMed]
    [Google Scholar]
  63. Wylie S. J., Jones M. G. K.. ( 2011;). The complete genome sequence of a Passion fruit woodiness virus isolate from Australia determined using deep sequencing, and its relationship to other potyviruses. . Arch Virol 156:, 479–482. [CrossRef][PubMed]
    [Google Scholar]
  64. Wylie S. J., Li H., Dixon K. W., Richards H., Jones M. G. K.. ( 2013;). Exotic and indigenous viruses infect wild populations and captive collections of temperate terrestrial orchids (Diuris species) in Australia. . Virus Res 171:, 22–32. [CrossRef][PubMed]
    [Google Scholar]
  65. Yaegashi H., Yoshikawa N., Ito T., Kanematsu S.. ( 2013;). A mycoreovirus suppresses RNA silencing in the white root rot fungus, Rosellinia necatrix. . Virology 444:, 409–416. [CrossRef][PubMed]
    [Google Scholar]
  66. Yu X., Li B., Fu Y., Jiang D., Ghabrial S. A., Li G., Peng Y., Xie J., Cheng J.. & other authors ( 2010;). A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. . Proc Natl Acad Sci U S A 107:, 8387–8392. [CrossRef][PubMed]
    [Google Scholar]
  67. Zerbino D. R., Birney E.. ( 2008;). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. . Genome Res 18:, 821–829. [CrossRef][PubMed]
    [Google Scholar]
  68. Zhang X., Segers G. C., Sun Q., Deng F., Nuss D. L.. ( 2008;). Characterization of hypovirus-derived small RNAs generated in the chestnut blight fungus by an inducible DCL-2-dependent pathway. . J Virol 82:, 2613–2619. [CrossRef][PubMed]
    [Google Scholar]
  69. Zhang X., Shi D., Nuss D. L.. ( 2012;). Variations in hypovirus interactions with the fungal-host RNA-silencing antiviral-defense response. . J Virol 86:, 12933–12939. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000003
Loading
/content/journal/jgv/10.1099/jgv.0.000003
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error