1887

Abstract

The simian herpesvirus saimiri (HVS) induces malignant T cell lymphomas and is closely related to Kaposi’s sarcoma-associated herpesvirus (KSHV or HHV-8). Both belong to the gamma-2 herpesvirus subgroup. The viral genome of HVS consists of a unique region (L-DNA) that contains all of the viral genes flanked by non-coding terminal repeats (H-DNA). Here we describe the cloning of a 113 kb restriction fragment containing the L-DNA of an oncogenic HVS strain in an F′ replicon-based vector. Cloned DNA was infectious and the ends of the progeny viral genome consisted of amplified tandem alternating repeats of vector and a single H-DNA unit. T cells infected with these viruses contained the linear DNA typically found a few weeks after infection, but were unable to form episomal circular viral DNA, which is the latent form of the viral genome. Recombinant viruses with reconstructed H-DNA were generated and T cells infected with these rescued viruses contained high copy numbers of episomal DNA. Plasmids expressing the latency-associated nuclear antigen (LANA) and containing various numbers of H-DNA repeats stably replicated as episomes, but constructs containing three repeat units produced the highest copy numbers. These data show that intact and multiple terminal repeats are essential components for episomal replication in latently infected T cells. Moreover, LANA and terminal repeats are sufficient for stable plasmid persistence. Cloned HVS can also be utilized for mutagenesis of HVS and for the expression of foreign genes through efficient manipulation of plasmids in .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-9-2269
2002-09-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/9/0832269a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-9-2269&mimeType=html&fmt=ahah

References

  1. Albrecht, J. C., Nicholas, J., Biller, D., Cameron, K. R., Biesinger, B., Newman, C., Wittmann, S., Craxton, M. A., Coleman, H. & Fleckenstein, B. ( 1992; ). Primary structure of the herpesvirus saimiri genome. Journal of Virology 66, 5047-5058.
    [Google Scholar]
  2. Ballestas, M. E. & Kaye, K. M. ( 2001; ). Kaposi’s sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cis-acting terminal repeat (TR) sequence and specifically binds TR DNA. Journal of Virology 75, 3250-3258.[CrossRef]
    [Google Scholar]
  3. Ballestas, M. E., Chatis, P. A. & Kaye, K. M. ( 1999; ). Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284, 641-644.[CrossRef]
    [Google Scholar]
  4. Bankier, A. T., Dietrich, W., Baer, R., Barrell, B. G., Colbere-Garapin, F., Fleckenstein, B. & Bodemer, W. ( 1985; ). Terminal repetitive sequences in herpesvirus saimiri virion DNA. Journal of Virology 55, 133-139.
    [Google Scholar]
  5. Biesinger, B., Muller-Fleckenstein, I., Simmer, B., Lang, G., Wittmann, S., Platzer, E., Desrosiers, R. C. & Fleckenstein, B. ( 1992; ). Stable growth transformation of human T lymphocytes by herpesvirus saimiri. Proceedings of the National Academy of Sciences, USA 89, 3116-3119.[CrossRef]
    [Google Scholar]
  6. Chittenden, T., Lupton, S. & Levine, A. J. ( 1989; ). Functional limits of oriP, the Epstein–Barr virus plasmid origin of replication. Journal of Virology 63, 3016-3025.
    [Google Scholar]
  7. Cotter, M. A.II & Robertson, E. S. ( 1999; ). The latency-associated nuclear antigen tethers the Kaposi’s sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. Virology 264, 254-264.[CrossRef]
    [Google Scholar]
  8. Delecluse, H. J., Hilsendegen, T., Pich, D., Zeidler, R. & Hammerschmidt, W. ( 1998; ). Propagation and recovery of intact, infectious Epstein–Barr virus from prokaryotic to human cells. Proceedings of the National Academy of Sciences, USA 95, 8245-8250.[CrossRef]
    [Google Scholar]
  9. Desrosiers, R. C. ( 1982; ). Specifically unmethylated cytidylic-guanylate sites in herpesvirus saimiri DNA in tumor cells. Journal of Virology 43, 427-435.
    [Google Scholar]
  10. Desrosiers, R. C., Mulder, C. & Fleckenstein, B. ( 1979; ). Methylation of herpesvirus saimiri DNA in lymphoid tumor cell lines. Proceedings of the National Academy of Sciences, USA 76, 3839-3843.[CrossRef]
    [Google Scholar]
  11. Desrosiers, R. C., Silva, D. P., Waldron, L. M. & Letvin, N. L. ( 1986; ). Nononcogenic deletion mutants of herpesvirus saimiri are defective for in vitro immortalization. Journal of Virology 57, 701-705.
    [Google Scholar]
  12. Fleckenstein, B. C. M. (1980). Molecular Aspects of Herpesvirus Saimiri and Herpesvirus Ateles. New York: Raven Press.
  13. Gardella, T., Medveczky, P., Sairenji, T. & Mulder, C. ( 1984; ). Detection of circular and linear herpesvirus DNA molecules in mammalian cells by gel electrophoresis. Journal of Virology 50, 248-254.
    [Google Scholar]
  14. Hall, K. T., Giles, M. S., Goodwin, D. J., Calderwood, M. A., Markham, A. F. & Whitehouse, A. ( 2000; ). Characterization of the herpesvirus saimiri ORF73 gene product. Journal of General Virology 81, 2653-2658.
    [Google Scholar]
  15. Hamlin, J. L., Mosca, P. J. & Levenson, V. V. ( 1994; ). Defining origins of replication in mammalian cells. Biochimica et Biophysica Acta 1198, 85-111.
    [Google Scholar]
  16. Hirt, B. ( 1967; ). Selective extraction of polyoma DNA from infected mouse cell cultures. Journal of Molecular Biology 26, 365-369.[CrossRef]
    [Google Scholar]
  17. Kung, S. H. & Medveczky, P. G. ( 1996; ). Identification of a herpesvirus saimiri cis-acting DNA fragment that permits stable replication of episomes in transformed T cells. Journal of Virology 70, 1738-1744.
    [Google Scholar]
  18. Little, R. D. & Schildkraut, C. L. ( 1995; ). Initiation of latent DNA replication in the Epstein–Barr virus genome can occur at sites other than the genetically defined origin. Molecular and Cellular Biology 15, 2893-2903.
    [Google Scholar]
  19. Medveczky, P. ( 1995; ). Oncogenic transformation of T cells by herpesvirus saimiri. In DNA Tumor Viruses: Oncogenic Mechanisms , pp. 239-249. Edited by G. Barbanti-Brodano, M. Bendinelli & H. Friedman. New York: Plenum.
  20. Medveczky, P., Szomolanyi, E., Desrosiers, R. C. & Mulder, C. ( 1984; ). Classification of herpesvirus saimiri into three groups based on extreme variation in a DNA region required for oncogenicity. Journal of Virology 52, 938-944.
    [Google Scholar]
  21. Medveczky, M. M., Szomolanyi, E., Hesselton, R., DeGrand, D., Geck, P. & Medveczky, P. G. ( 1989; ). Herpesvirus saimiri strains from three DNA subgroups have different oncogenic potentials in New Zealand white rabbits. Journal of Virology 63, 3601-3611.
    [Google Scholar]
  22. Medveczky, M. M., Geck, P., Sullivan, J. L., Serbousek, D., Djeu, J. Y. & Medveczky, P. G. ( 1993; ). IL-2 independent growth and cytotoxicity of herpesvirus saimiri-infected human CD8 cells and involvement of two open reading frame sequences of the virus. Virology 196, 402-412.[CrossRef]
    [Google Scholar]
  23. Melendez, L. V., Daniel, M. D., Hunt, R. D. & Garcia, F. G. ( 1968; ). An apparently new herpesvirus from primary kidney cultures of the squirrel monkey (Saimiri sciureus). Laboratory Animal Care 18, 374-381.
    [Google Scholar]
  24. Messerle, M., Crnkovic, I., Hammerschmidt, W., Ziegler, H. & Koszinowski, U. H. ( 1997; ). Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proceedings of the National Academy of Sciences, USA 94, 14759-14763.[CrossRef]
    [Google Scholar]
  25. Norio, P., Schildkraut, C. L. & Yates, J. L. ( 2000; ). Initiation of DNA replication within oriP is dispensable for stable replication of the latent Epstein–Barr virus chromosome after infection of established cell lines. Journal of Virology 74, 8563-8574.[CrossRef]
    [Google Scholar]
  26. Reisman, D., Yates, J. & Sugden, B. ( 1985; ). A putative origin of replication of plasmids derived from Epstein–Barr virus is composed of two cis-acting components. Molecular and Cellular Biology 5, 1822-1832.
    [Google Scholar]
  27. Russo, J. J., Bohenzky, R. A., Chien, M. C., Chen, J., Yan, M., Maddalena, D., Parry, J. P., Peruzzi, D., Edelman, I. S., Chang, Y. & Moore, P. S. ( 1996; ). Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proceedings of the National Academy of Sciences, USA 93, 14862-14867.[CrossRef]
    [Google Scholar]
  28. Schirm, S., Muller, I., Desrosiers, R. C. & Fleckenstein, B. ( 1984; ). Herpesvirus saimiri DNA in a lymphoid cell line established by in vitro transformation. Journal of Virology 49, 938-946.
    [Google Scholar]
  29. Shizuya, H., Birren, B., Kim, U. J., Mancino, V., Slepak, T., Tachiiri, Y. & Simon, M. ( 1992; ). Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proceedings of the National Academy of Sciences, USA 89, 8794-8797.[CrossRef]
    [Google Scholar]
  30. Szomolanyi, E., Medveczky, P. & Mulder, C. ( 1987; ). In vitro immortalization of marmoset cells with three subgroups of herpesvirus saimiri. Journal of Virology 61, 3485-3490.
    [Google Scholar]
  31. Wysokenski, D. A. & Yates, J. L. ( 1989; ). Multiple EBNA1-binding sites are required to form an EBNA1-dependent enhancer and to activate a minimal replicative origin within oriP of Epstein–Barr virus. Journal of Virology 63, 2657-2666.
    [Google Scholar]
  32. Yates, J. L. & Guan, N. ( 1991; ). Epstein–Barr virus-derived plasmids replicate only once per cell cycle and are not amplified after entry into cells. Journal of Virology 65, 483-488.
    [Google Scholar]
  33. Yates, J. L., Warren, N. & Sugden, B. ( 1985; ). Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells. Nature 313, 812-815.[CrossRef]
    [Google Scholar]
  34. Youssoufian, H. & Mulder, C. ( 1981; ). Detection of methylated sequences in eukaryotic DNA with the restriction endonucleases Smai and Xmai. Journal of Molecular Biology 150, 133-136.[CrossRef]
    [Google Scholar]
  35. Zhang, Y., Buchholz, F., Muyrers, J. P. & Stewart, A. F. ( 1998; ). A new logic for DNA engineering using recombination in Escherichia coli. Nature Genetics 20, 123-128.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-9-2269
Loading
/content/journal/jgv/10.1099/0022-1317-83-9-2269
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error