1887

Abstract

Thegene, one of the six auxiliary genes of human immunodeficiency virus (HIV), is essential for virus propagation in peripheral blood lymphocytes and macrophages and in certain T-cell lines. Previously, it was demonstrated that Vif inhibits the autoprocessing of truncated HIV type 1 (HIV-1) Gag–Pol polyproteins expressed in bacterial cells, as well as the protease-mediated cleavage of synthetic peptides . Peptides derived from the aa 78–98 region in the Vif molecule specifically inhibit and bind the HIV-1 protease and arrest the production of infectious viruses in HIV-1-infected cells. This study demonstrates that (i) purified recombinant Vif protein and HIV-1 but not avian sarcoma leukaemia virus protease specifically bind each other and (ii) the interaction between these two proteins takes place at the N terminus of the protease (aa 1–9) and the central part of Vif (aa 78–98). The data presented in this report suggest a model in which Vif interacts with the dimerization sites of the viral protease.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-9-2225
2002-09-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/9/0832225a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-9-2225&mimeType=html&fmt=ahah

References

  1. Aldrovandi, G. M. & Zack, J. A. ( 1996; ). Replication and pathogenicity of human immunodeficiency virus type 1 accessory gene mutants in SCID-hu mice. Journal of Virology 70, 1505-1511.
    [Google Scholar]
  2. Babe, L. M., Pichuantes, S. & Craik, C. S. ( 1991; ). Inhibition of HIV protease activity by heterodimer formation. Biochemistry 30, 106-111.[CrossRef]
    [Google Scholar]
  3. Babe, L. M., Rose, J. & Craik, C. S. ( 1992; ). Synthetic ‘interface’ peptides alter dimeric assembly of the HIV 1 and 2 proteases. Protein Science 1, 1244-1253.[CrossRef]
    [Google Scholar]
  4. Baraz, L., Friedler, A., Blumenzweig, I., Nussinuv, O., Chen, N., Steinitz, M., Gilon, C. & Kotler, M. ( 1998; ). Human immunodeficiency virus type 1 Vif-derived peptides inhibit the viral protease and arrest virus production. FEBS Letters 441, 419-426.[CrossRef]
    [Google Scholar]
  5. Bardy, M., Gay, B., Pebernard, S., Chazal, N., Courcoul, M., Vigne, R., Decroly, E. & Boulanger, P. ( 2001; ). Interaction of human immunodeficiency virus type 1 Vif with Gag and Gag–Pol precursors: co-encapsidation and interference with viral protease-mediated Gag processing. Journal of General Virology 82, 2719-2733.
    [Google Scholar]
  6. Blumenzweig, I., Baraz, L., Friedler, A., Danielson, H., Gilon, C., Steinitz, M. & Kotler, M. ( 2002; ). HIV-1 Vif-derived peptide inhibits drug-resistant HIV proteases. Biochemical and Biophysical Research Communications 292, 832-840.[CrossRef]
    [Google Scholar]
  7. Bouyac, M., Courcoul, M., Bertoia, G., Baudat, Y., Gabuzda, D., Blanc, D., Chazal, N., Boulanger, P., Sire, J., Vigne, R. & Spire, B. ( 1997a; ). Human immunodeficiency virus type 1 Vif protein binds to the Pr55Gag precursor. Journal of Virology 71, 9358-9365.
    [Google Scholar]
  8. Bouyac, M., Rey, F., Nascimbeni, M., Courcoul, M., Sire, J., Blanc, D., Clavel, F., Vigne, R. & Spire, B. ( 1997b; ). Phenotypically Vif-human immunodeficiency virus type 1 is produced by chronically infected restrictive cells. Journal of Virology 71, 2473-2477.
    [Google Scholar]
  9. Camaur, D. & Trono, D. ( 1996; ). Characterization of human immunodeficiency virus type 1 Vif particle incorporation. Journal of Virology 70, 6106-6111.
    [Google Scholar]
  10. Chowdhury, I. H., Chao, W., Potash, M. J., Sova, P., Gendelman, H. E. & Volsky, D. J. ( 1996; ). vif-negative human immunodeficiency virus type 1 persistently replicates in primary macrophages, producing attenuated progeny virus. Journal of Virology 70, 5336-5345.
    [Google Scholar]
  11. Co, E., Koelsch, G., Lin, Y., Ido, E., Hartsuck, J. A. & Tang, J. ( 1994; ). Proteolytic processing mechanisms of a miniprecursor of the aspartic protease of human immunodeficiency virus type 1. Biochemistry 33, 1248-1254.[CrossRef]
    [Google Scholar]
  12. Courcoul, M., Patience, C., Rey, F., Blanc, D., Harmache, A., Sire, J., Vigne, R. & Spire, B. ( 1995; ). Peripheral blood mononuclear cells produce normal amounts of defective Vif-human immunodeficiency virus type 1 particles which are restricted for the preretrotranscription steps. Journal of Virology 69, 2068-2074.
    [Google Scholar]
  13. Crawford, S. & Goff, S. P. ( 1985; ). A deletion mutation in the 5′ part of the pol gene of Moloney murine leukemia virus blocks proteolytic processing of the Gag and Pol polyproteins. Journal of Virology 53, 899-907.
    [Google Scholar]
  14. Fontenot, G., Johnston, K., Cohen, J. C., Gallaher, W. R., Robinson, J. & Luftig, R. B. ( 1992; ). PCR amplification of HIV-1 proteinase sequences directly from lab isolates allows determination of five conserved domains. Virology 190, 1-10.[CrossRef]
    [Google Scholar]
  15. Fouchier, R. A., Simon, J. H., Jaffe, A. B. & Malim, M. H. ( 1996; ). Human immunodeficiency virus type 1 Vif does not influence expression or virion incorporation of gag-, pol-, and env-encoded proteins. Journal of Virology 70, 8263-8269.
    [Google Scholar]
  16. Friedler, A., Blumenzweig, I., Baraz, L., Steinitz, M., Kotler, M. & Gilon, C. ( 1999; ). Peptides derived from HIV-1 Vif: a non-substrate based novel type of HIV-1 protease inhibitor. Journal of Molecular Biology 287, 93-101.[CrossRef]
    [Google Scholar]
  17. Gabuzda, D. H., Lawrence, K., Langhoff, E., Terwilliger, E., Dorfman, T., Haseltine, W. A. & Sodroski, J. ( 1992; ). Role of Vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. Journal of Virology 66, 6489-6495.
    [Google Scholar]
  18. Garrett, E. D., Tiley, L. S. & Cullen, B. R. ( 1991; ). Rev activates expression of the human immunodeficiency virus type 1 vif and vpr gene products. Journal of Virology 65, 1653-1657.
    [Google Scholar]
  19. Goncalves, J., Jallepalli, P. & Gabuzda, D. H. ( 1994; ). Subcellular localization of the Vif protein of human immunodeficiency virus type 1. Journal of Virology 68, 704-712.
    [Google Scholar]
  20. Goncalves, J., Shi, B., Yang, X. & Gabuzda, D. ( 1995; ). Biological activity of human immunodeficiency virus type 1 Vif requires membrane targeting by C-terminal basic domains. Journal of Virology 69, 7196-7204.
    [Google Scholar]
  21. Huvent, I., Hong, S. S., Fournier, C., Gay, B., Tournier, J., Carriere, C., Courcoul, M., Vigne, R., Spire, B. & Boulanger, P. ( 1998; ). Interaction and co-encapsidation of human immunodeficiency virus type 1 Gag and Vif recombinant proteins. Journal of General Virology 79, 1069-1081.
    [Google Scholar]
  22. Kaplan, A. H. & Swanstrom, R. ( 1991a; ). The HIV-1 Gag precursor is processed via two pathways: implications for cytotoxicity. Biomedica et Biochimica Acta 50, 647-653.
    [Google Scholar]
  23. Kaplan, A. H. & Swanstrom, R. ( 1991b; ). Human immunodeficiency virus type 1 Gag proteins are processed in two cellular compartments. Proceedings of the National Academy of Sciences, USA 88, 4528-4532.[CrossRef]
    [Google Scholar]
  24. Kaplan, A. H., Manchester, M. & Swanstrom, R. ( 1994; ). The activity of the protease of human immunodeficiency virus type 1 is initiated at the membrane of infected cells before the release of viral proteins and is required for release to occur with maximum efficiency. Journal of Virology 68, 6782-6786.
    [Google Scholar]
  25. Karageorgos, L., Li, P. & Burrell, C. ( 1993; ). Characterization of HIV replication complexes early after cell-to-cell infection. AIDS Research and Human Retroviruses 9, 817-823.[CrossRef]
    [Google Scholar]
  26. Katoh, I., Yoshinaka, Y., Rein, A., Shibuya, M., Odaka, T. & Oroszlan, S. ( 1985; ). Murine leukemia virus maturation: protease region required for conversion from ‘immature’ to ‘mature’ core form and for virus infectivity. Virology 145, 280-292.[CrossRef]
    [Google Scholar]
  27. Khan, M. A., Aberham, C., Kao, S., Akari, H., Gorelick, R., Bour, S. & Strebel, K. ( 2001; ). Human immunodeficiency virus type 1 Vif protein is packaged into the nucleoprotein complex through an interaction with viral genomic RNA. Journal of Virology 75, 7252-7265.[CrossRef]
    [Google Scholar]
  28. Kohl, N. E., Emini, E. A., Schleif, W. A., Davis, L. J., Heimbach, J. C., Dixon, R. A., Scolnick, E. M. & Sigal, I. S. ( 1988; ). Active human immunodeficiency virus protease is required for viral infectivity. Proceedings of the National Academy of Sciences, USA 85, 4686-4690.[CrossRef]
    [Google Scholar]
  29. Kotler, M., Katz, R. A. & Skalka, A. M. ( 1988; ). Activity of avian retroviral protease expressed in Escherichia coli. Journal of Virology 62, 2696-2700.
    [Google Scholar]
  30. Kotler, M., Arad, G. & Hughes, S. H. ( 1992; ). Human immunodeficiency virus type 1 Gag–protease fusion proteins are enzymatically active. Journal of Virology 66, 6781-6783.
    [Google Scholar]
  31. Kotler, M., Simm, M., Zhao, Y. S., Sova, P., Chao, W., Ohnona, S. F., Roller, R., Krachmarov, C., Potash, M. J. & Volsky, D. J. ( 1997; ). Human immunodeficiency virus type 1 (HIV-1) protein Vif inhibits the activity of HIV-1 protease in bacteria and in vitro. Journal of Virology 71, 5774-5781.
    [Google Scholar]
  32. Liu, H., Wu, X., Newman, M., Shaw, G. M., Hahn, B. H. & Kappes, J. C. ( 1995; ). The Vif protein of human and simian immunodeficiency viruses is packaged into virions and associates with viral core structures. Journal of Virology 69, 7630-7638.
    [Google Scholar]
  33. Ohagen, A. & Gabuzda, D. ( 2000; ). Role of Vif in stability of the human immunodeficiency virus type 1 core. Journal of Virology 74, 11055-11066.[CrossRef]
    [Google Scholar]
  34. Oroszlan, S. & Luftig, R. B. ( 1990; ). Retroviral proteinases. Current Topics in Microbiology and Immunology 157, 153-185.
    [Google Scholar]
  35. Pearl, L. H. & Taylor, W. R. ( 1987; ). A structural model for the retroviral proteases. Nature 329, 351-354.[CrossRef]
    [Google Scholar]
  36. Potash, M. J., Bentsman, G., Muir, T., Krachmarov, C., Sova, P. & Volsky, D. J. ( 1998; ). Peptide inhibitors of HIV-1 protease and viral infection of peripheral blood lymphocytes based on HIV-1 Vif. Proceedings of the National Academy of Sciences, USA 95, 13865-13868.[CrossRef]
    [Google Scholar]
  37. Reddy, T. R., Kraus, G., Yamada, O., Looney, D. J., Suhasini, M. & Wong-Staal, F. ( 1995; ). Comparative analyses of human immunodeficiency virus type 1 (HIV-1) and HIV-2 Vif mutants. Journal of Virology 69, 3549-3553.
    [Google Scholar]
  38. Sakai, H., Shibata, R., Sakuragi, J., Sakuragi, S., Kawamura, M. & Adachi, A. ( 1993; ). Cell-dependent requirement of human immunodeficiency virus type 1 Vif protein for maturation of virus particles. Journal of Virology 67, 1663-1666.
    [Google Scholar]
  39. Schramm, H. J., Boetzel, J., Buttner, J., Fritsche, E., Gohring, W., Jaeger, E., Konig, S., Thumfart, O., Wenger, T., Nagel, N. E. & Schramm, W. ( 1996; ). The inhibition of human immunodeficiency virus proteases by ‘interface peptides’. Antiviral Research 30, 155-170.[CrossRef]
    [Google Scholar]
  40. Schramm, H. J., de Rosny, E., Reboud-Ravaux, M., Buttner, J., Dick, A. & Schramm, W. ( 1999; ). Lipopeptides as dimerization inhibitors of HIV-1 protease. Biological Chemistry 380, 593-596.
    [Google Scholar]
  41. Simm, M., Shahabuddin, M., Chao, W., Allan, J. S. & Volsky, D. J. ( 1995; ). Aberrant Gag protein composition of a human immunodeficiency virus type 1 vif mutant produced in primary lymphocytes. Journal of Virology 69, 4582-4586.
    [Google Scholar]
  42. Simon, J. H., Southerling, T. E., Peterson, J. C., Meyer, B. E. & Malim, M. H. ( 1995; ). Complementation of vif-defective human immunodeficiency virus type 1 by primate, but not nonprimate, lentivirus vif genes. Journal of Virology 69, 4166-4172.
    [Google Scholar]
  43. Sova, P., Volsky, D. J., Wang, L. & Chao, W. ( 2001; ). Vif is largely absent from human immunodeficiency virus type 1 mature virions and associates mainly with viral particles containing unprocessed Gag. Journal of Virology 75, 5504-5517.[CrossRef]
    [Google Scholar]
  44. Steinitz, M. & Baraz, L. ( 2000; ). A rapid method for estimating the binding of ligands to ELISA microwells. Journal of Immunological Methods 238, 143-150.[CrossRef]
    [Google Scholar]
  45. Strebel, K., Daugherty, D., Clouse, K., Cohen, D., Folks, T. & Martin, M. A. ( 1987; ). The HIV ‘A’ (sor) gene product is essential for virus infectivity. Nature 328, 728-730.[CrossRef]
    [Google Scholar]
  46. Tomasselli, A. G. & Heinrikson, R. L. ( 2000; ). Targeting the HIV–protease in AIDS therapy: a current clinical perspective. Biochimica et Biophysica Acta 1477, 189-214.[CrossRef]
    [Google Scholar]
  47. Vogt, V. M. ( 1996; ). Proteolytic processing and particle maturation. Current Topics in Microbiology and Immunology 214, 95-131.
    [Google Scholar]
  48. von Schwedler, U., Song, J., Aiken, C. & Trono, D. ( 1993; ). Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. Journal of Virology 67, 4945-4955.
    [Google Scholar]
  49. Wills, J., Craven, R. & Achacoso, J. ( 1989; ). Form, function, and use of retroviral Gag proteins. AIDS 5, 639-654.
    [Google Scholar]
  50. Yang, X., Goncalves, J. & Gabuzda, D. ( 1996; ). Phosphorylation of Vif and its role in HIV-1 replication. Journal of Biological Chemistry 271, 10121-10129.[CrossRef]
    [Google Scholar]
  51. Zybarth, G., Krausslich, H. G., Partin, K. & Carter, C. ( 1994; ). Proteolytic activity of novel human immunodeficiency virus type 1 proteinase proteins from a precursor with a blocking mutation at the N terminus of the PR domain. Journal of Virology 68, 240-250.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-9-2225
Loading
/content/journal/jgv/10.1099/0022-1317-83-9-2225
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error