1887

Abstract

Thegene, one of the six auxiliary genes of human immunodeficiency virus (HIV), is essential for virus propagation in peripheral blood lymphocytes and macrophages and in certain T-cell lines. Previously, it was demonstrated that Vif inhibits the autoprocessing of truncated HIV type 1 (HIV-1) Gag–Pol polyproteins expressed in bacterial cells, as well as the protease-mediated cleavage of synthetic peptides . Peptides derived from the aa 78–98 region in the Vif molecule specifically inhibit and bind the HIV-1 protease and arrest the production of infectious viruses in HIV-1-infected cells. This study demonstrates that (i) purified recombinant Vif protein and HIV-1 but not avian sarcoma leukaemia virus protease specifically bind each other and (ii) the interaction between these two proteins takes place at the N terminus of the protease (aa 1–9) and the central part of Vif (aa 78–98). The data presented in this report suggest a model in which Vif interacts with the dimerization sites of the viral protease.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-9-2225
2002-09-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/9/0832225a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-9-2225&mimeType=html&fmt=ahah

References

  1. Aldrovandi G. M., Zack J. A. 1996; Replication and pathogenicity of human immunodeficiency virus type 1 accessory gene mutants in SCID-hu mice. Journal of Virology 70:1505–1511
    [Google Scholar]
  2. Babe L. M., Pichuantes S., Craik C. S. 1991; Inhibition of HIV protease activity by heterodimer formation. Biochemistry 30:106–111
    [Google Scholar]
  3. Babe L. M., Rose J., Craik C. S. 1992; Synthetic ‘interface’ peptides alter dimeric assembly of the HIV 1 and 2 proteases. Protein Science 1:1244–1253
    [Google Scholar]
  4. Baraz L., Friedler A., Blumenzweig I., Nussinuv O., Chen N., Steinitz M., Gilon C., Kotler M. 1998; Human immunodeficiency virus type 1 Vif-derived peptides inhibit the viral protease and arrest virus production. FEBS Letters 441:419–426
    [Google Scholar]
  5. Bardy M., Gay B., Pebernard S., Chazal N., Courcoul M., Vigne R., Decroly E., Boulanger P. 2001; Interaction of human immunodeficiency virus type 1 Vif with Gag and Gag–Pol precursors: co-encapsidation and interference with viral protease-mediated Gag processing. Journal of General Virology 82:2719–2733
    [Google Scholar]
  6. Blumenzweig I., Baraz L., Friedler A., Danielson H., Gilon C., Steinitz M., Kotler M. 2002; HIV-1 Vif-derived peptide inhibits drug-resistant HIV proteases. Biochemical and Biophysical Research Communications 292:832–840
    [Google Scholar]
  7. Bouyac M., Courcoul M., Bertoia G., Baudat Y., Gabuzda D., Blanc D., Chazal N., Boulanger P., Sire J., Vigne R., Spire B. 1997a; Human immunodeficiency virus type 1 Vif protein binds to the Pr55Gag precursor. Journal of Virology 71:9358–9365
    [Google Scholar]
  8. Bouyac M., Rey F., Nascimbeni M., Courcoul M., Sire J., Blanc D., Clavel F., Vigne R., Spire B. 1997b; Phenotypically Vif-human immunodeficiency virus type 1 is produced by chronically infected restrictive cells. Journal of Virology 71:2473–2477
    [Google Scholar]
  9. Camaur D., Trono D. 1996; Characterization of human immunodeficiency virus type 1 Vif particle incorporation. Journal of Virology 70:6106–6111
    [Google Scholar]
  10. Chowdhury I. H., Chao W., Potash M. J., Sova P., Gendelman H. E., Volsky D. J. 1996; vif -negative human immunodeficiency virus type 1 persistently replicates in primary macrophages, producing attenuated progeny virus. Journal of Virology 70:5336–5345
    [Google Scholar]
  11. Co E., Koelsch G., Lin Y., Ido E., Hartsuck J. A., Tang J. 1994; Proteolytic processing mechanisms of a miniprecursor of the aspartic protease of human immunodeficiency virus type 1. Biochemistry 33:1248–1254
    [Google Scholar]
  12. Courcoul M., Patience C., Rey F., Blanc D., Harmache A., Sire J., Vigne R., Spire B. 1995; Peripheral blood mononuclear cells produce normal amounts of defective Vif-human immunodeficiency virus type 1 particles which are restricted for the preretrotranscription steps. Journal of Virology 69:2068–2074
    [Google Scholar]
  13. Crawford S., Goff S. P. 1985; A deletion mutation in the 5′ part of the pol gene of Moloney murine leukemia virus blocks proteolytic processing of the Gag and Pol polyproteins. Journal of Virology 53:899–907
    [Google Scholar]
  14. Fontenot G., Johnston K., Cohen J. C., Gallaher W. R., Robinson J., Luftig R. B. 1992; PCR amplification of HIV-1 proteinase sequences directly from lab isolates allows determination of five conserved domains. Virology 190:1–10
    [Google Scholar]
  15. Fouchier R. A., Simon J. H., Jaffe A. B., Malim M. H. 1996; Human immunodeficiency virus type 1 Vif does not influence expression or virion incorporation of gag -, pol -, and env -encoded proteins. Journal of Virology 70:8263–8269
    [Google Scholar]
  16. Friedler A., Blumenzweig I., Baraz L., Steinitz M., Kotler M., Gilon C. 1999; Peptides derived from HIV-1 Vif: a non-substrate based novel type of HIV-1 protease inhibitor. Journal of Molecular Biology 287:93–101
    [Google Scholar]
  17. Gabuzda D. H., Lawrence K., Langhoff E., Terwilliger E., Dorfman T., Haseltine W. A., Sodroski J. 1992; Role of Vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. Journal of Virology 66:6489–6495
    [Google Scholar]
  18. Garrett E. D., Tiley L. S., Cullen B. R. 1991; Rev activates expression of the human immunodeficiency virus type 1 vif and vpr gene products. Journal of Virology 65:1653–1657
    [Google Scholar]
  19. Goncalves J., Jallepalli P., Gabuzda D. H. 1994; Subcellular localization of the Vif protein of human immunodeficiency virus type 1. Journal of Virology 68:704–712
    [Google Scholar]
  20. Goncalves J., Shi B., Yang X., Gabuzda D. 1995; Biological activity of human immunodeficiency virus type 1 Vif requires membrane targeting by C-terminal basic domains. Journal of Virology 69:7196–7204
    [Google Scholar]
  21. Huvent I., Hong S. S., Fournier C., Gay B., Tournier J., Carriere C., Courcoul M., Vigne R., Spire B., Boulanger P. 1998; Interaction and co-encapsidation of human immunodeficiency virus type 1 Gag and Vif recombinant proteins. Journal of General Virology 79:1069–1081
    [Google Scholar]
  22. Kaplan A. H., Swanstrom R. 1991a; The HIV-1 Gag precursor is processed via two pathways: implications for cytotoxicity. Biomedica et Biochimica Acta 50:647–653
    [Google Scholar]
  23. Kaplan A. H., Swanstrom R. 1991b; Human immunodeficiency virus type 1 Gag proteins are processed in two cellular compartments. Proceedings of the National Academy of Sciences, USA 88:4528–4532
    [Google Scholar]
  24. Kaplan A. H., Manchester M., Swanstrom R. 1994; The activity of the protease of human immunodeficiency virus type 1 is initiated at the membrane of infected cells before the release of viral proteins and is required for release to occur with maximum efficiency. Journal of Virology 68:6782–6786
    [Google Scholar]
  25. Karageorgos L., Li P., Burrell C. 1993; Characterization of HIV replication complexes early after cell-to-cell infection. AIDS Research and Human Retroviruses 9:817–823
    [Google Scholar]
  26. Katoh I., Yoshinaka Y., Rein A., Shibuya M., Odaka T., Oroszlan S. 1985; Murine leukemia virus maturation: protease region required for conversion from ‘immature’ to ‘mature’ core form and for virus infectivity. Virology 145:280–292
    [Google Scholar]
  27. Khan M. A., Aberham C., Kao S., Akari H., Gorelick R., Bour S., Strebel K. 2001; Human immunodeficiency virus type 1 Vif protein is packaged into the nucleoprotein complex through an interaction with viral genomic RNA. Journal of Virology 75:7252–7265
    [Google Scholar]
  28. Kohl N. E., Emini E. A., Schleif W. A., Davis L. J., Heimbach J. C., Dixon R. A., Scolnick E. M., Sigal I. S. 1988; Active human immunodeficiency virus protease is required for viral infectivity. Proceedings of the National Academy of Sciences, USA 85:4686–4690
    [Google Scholar]
  29. Kotler M., Katz R. A., Skalka A. M. 1988; Activity of avian retroviral protease expressed in Escherichia coli . Journal of Virology 62:2696–2700
    [Google Scholar]
  30. Kotler M., Arad G., Hughes S. H. 1992; Human immunodeficiency virus type 1 Gag–protease fusion proteins are enzymatically active. Journal of Virology 66:6781–6783
    [Google Scholar]
  31. Kotler M., Simm M., Zhao Y. S., Sova P., Chao W., Ohnona S. F., Roller R., Krachmarov C., Potash M. J., Volsky D. J. 1997; Human immunodeficiency virus type 1 (HIV-1) protein Vif inhibits the activity of HIV-1 protease in bacteria and in vitro . Journal of Virology 71:5774–5781
    [Google Scholar]
  32. Liu H., Wu X., Newman M., Shaw G. M., Hahn B. H., Kappes J. C. 1995; The Vif protein of human and simian immunodeficiency viruses is packaged into virions and associates with viral core structures. Journal of Virology 69:7630–7638
    [Google Scholar]
  33. Ohagen A., Gabuzda D. 2000; Role of Vif in stability of the human immunodeficiency virus type 1 core. Journal of Virology 74:11055–11066
    [Google Scholar]
  34. Oroszlan S., Luftig R. B. 1990; Retroviral proteinases. Current Topics in Microbiology and Immunology 157:153–185
    [Google Scholar]
  35. Pearl L. H., Taylor W. R. 1987; A structural model for the retroviral proteases. Nature 329:351–354
    [Google Scholar]
  36. Potash M. J., Bentsman G., Muir T., Krachmarov C., Sova P., Volsky D. J. 1998; Peptide inhibitors of HIV-1 protease and viral infection of peripheral blood lymphocytes based on HIV-1 Vif. Proceedings of the National Academy of Sciences, USA 95:13865–13868
    [Google Scholar]
  37. Reddy T. R., Kraus G., Yamada O., Looney D. J., Suhasini M., Wong-Staal F. 1995; Comparative analyses of human immunodeficiency virus type 1 (HIV-1) and HIV-2 Vif mutants. Journal of Virology 69:3549–3553
    [Google Scholar]
  38. Sakai H., Shibata R., Sakuragi J., Sakuragi S., Kawamura M., Adachi A. 1993; Cell-dependent requirement of human immunodeficiency virus type 1 Vif protein for maturation of virus particles. Journal of Virology 67:1663–1666
    [Google Scholar]
  39. Schramm H. J., Boetzel J., Buttner J., Fritsche E., Gohring W., Jaeger E., Konig S., Thumfart O., Wenger T., Nagel N. E., Schramm W. 1996; The inhibition of human immunodeficiency virus proteases by ‘interface peptides’. Antiviral Research 30:155–170
    [Google Scholar]
  40. Schramm H. J., de Rosny E., Reboud-Ravaux M., Buttner J., Dick A., Schramm W. 1999; Lipopeptides as dimerization inhibitors of HIV-1 protease. Biological Chemistry 380:593–596
    [Google Scholar]
  41. Simm M., Shahabuddin M., Chao W., Allan J. S., Volsky D. J. 1995; Aberrant Gag protein composition of a human immunodeficiency virus type 1 vif mutant produced in primary lymphocytes. Journal of Virology 69:4582–4586
    [Google Scholar]
  42. Simon J. H., Southerling T. E., Peterson J. C., Meyer B. E., Malim M. H. 1995; Complementation of vif -defective human immunodeficiency virus type 1 by primate, but not nonprimate, lentivirus vif genes. Journal of Virology 69:4166–4172
    [Google Scholar]
  43. Sova P., Volsky D. J., Wang L., Chao W. 2001; Vif is largely absent from human immunodeficiency virus type 1 mature virions and associates mainly with viral particles containing unprocessed Gag. Journal of Virology 75:5504–5517
    [Google Scholar]
  44. Steinitz M., Baraz L. 2000; A rapid method for estimating the binding of ligands to ELISA microwells. Journal of Immunological Methods 238:143–150
    [Google Scholar]
  45. Strebel K., Daugherty D., Clouse K., Cohen D., Folks T., Martin M. A. 1987; The HIV ‘A’ ( sor ) gene product is essential for virus infectivity. Nature 328:728–730
    [Google Scholar]
  46. Tomasselli A. G., Heinrikson R. L. 2000; Targeting the HIV–protease in AIDS therapy: a current clinical perspective. Biochimica et Biophysica Acta 1477:189–214
    [Google Scholar]
  47. Vogt V. M. 1996; Proteolytic processing and particle maturation. Current Topics in Microbiology and Immunology 214:95–131
    [Google Scholar]
  48. von Schwedler U., Song J., Aiken C., Trono D. 1993; Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. Journal of Virology 67:4945–4955
    [Google Scholar]
  49. Wills J., Craven R., Achacoso J. 1989; Form, function, and use of retroviral Gag proteins. AIDS 5:639–654
    [Google Scholar]
  50. Yang X., Goncalves J., Gabuzda D. 1996; Phosphorylation of Vif and its role in HIV-1 replication. Journal of Biological Chemistry 271:10121–10129
    [Google Scholar]
  51. Zybarth G., Krausslich H. G., Partin K., Carter C. 1994; Proteolytic activity of novel human immunodeficiency virus type 1 proteinase proteins from a precursor with a blocking mutation at the N terminus of the PR domain. Journal of Virology 68:240–250
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-9-2225
Loading
/content/journal/jgv/10.1099/0022-1317-83-9-2225
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error