Skip to content
1887

Abstract

Thegene, one of the six auxiliary genes of human immunodeficiency virus (HIV), is essential for virus propagation in peripheral blood lymphocytes and macrophages and in certain T-cell lines. Previously, it was demonstrated that Vif inhibits the autoprocessing of truncated HIV type 1 (HIV-1) Gag–Pol polyproteins expressed in bacterial cells, as well as the protease-mediated cleavage of synthetic peptides . Peptides derived from the aa 78–98 region in the Vif molecule specifically inhibit and bind the HIV-1 protease and arrest the production of infectious viruses in HIV-1-infected cells. This study demonstrates that (i) purified recombinant Vif protein and HIV-1 but not avian sarcoma leukaemia virus protease specifically bind each other and (ii) the interaction between these two proteins takes place at the N terminus of the protease (aa 1–9) and the central part of Vif (aa 78–98). The data presented in this report suggest a model in which Vif interacts with the dimerization sites of the viral protease.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-9-2225
2002-09-01
2025-02-11
Loading full text...

Full text loading...

References

  1. Aldrovandi G. M., Zack J. A. 1996; Replication and pathogenicity of human immunodeficiency virus type 1 accessory gene mutants in SCID-hu mice. Journal of Virology 70:1505–1511
    [Google Scholar]
  2. Babe L. M., Pichuantes S., Craik C. S. 1991; Inhibition of HIV protease activity by heterodimer formation. Biochemistry 30:106–111
    [Google Scholar]
  3. Babe L. M., Rose J., Craik C. S. 1992; Synthetic ‘interface’ peptides alter dimeric assembly of the HIV 1 and 2 proteases. Protein Science 1:1244–1253
    [Google Scholar]
  4. Baraz L., Friedler A., Blumenzweig I., Nussinuv O., Chen N., Steinitz M., Gilon C., Kotler M. 1998; Human immunodeficiency virus type 1 Vif-derived peptides inhibit the viral protease and arrest virus production. FEBS Letters 441:419–426
    [Google Scholar]
  5. Bardy M., Gay B., Pebernard S., Chazal N., Courcoul M., Vigne R., Decroly E., Boulanger P. 2001; Interaction of human immunodeficiency virus type 1 Vif with Gag and Gag–Pol precursors: co-encapsidation and interference with viral protease-mediated Gag processing. Journal of General Virology 82:2719–2733
    [Google Scholar]
  6. Blumenzweig I., Baraz L., Friedler A., Danielson H., Gilon C., Steinitz M., Kotler M. 2002; HIV-1 Vif-derived peptide inhibits drug-resistant HIV proteases. Biochemical and Biophysical Research Communications 292:832–840
    [Google Scholar]
  7. Bouyac M., Courcoul M., Bertoia G., Baudat Y., Gabuzda D., Blanc D., Chazal N., Boulanger P., Sire J., Vigne R., Spire B. 1997a; Human immunodeficiency virus type 1 Vif protein binds to the Pr55Gag precursor. Journal of Virology 71:9358–9365
    [Google Scholar]
  8. Bouyac M., Rey F., Nascimbeni M., Courcoul M., Sire J., Blanc D., Clavel F., Vigne R., Spire B. 1997b; Phenotypically Vif-human immunodeficiency virus type 1 is produced by chronically infected restrictive cells. Journal of Virology 71:2473–2477
    [Google Scholar]
  9. Camaur D., Trono D. 1996; Characterization of human immunodeficiency virus type 1 Vif particle incorporation. Journal of Virology 70:6106–6111
    [Google Scholar]
  10. Chowdhury I. H., Chao W., Potash M. J., Sova P., Gendelman H. E., Volsky D. J. 1996; vif -negative human immunodeficiency virus type 1 persistently replicates in primary macrophages, producing attenuated progeny virus. Journal of Virology 70:5336–5345
    [Google Scholar]
  11. Co E., Koelsch G., Lin Y., Ido E., Hartsuck J. A., Tang J. 1994; Proteolytic processing mechanisms of a miniprecursor of the aspartic protease of human immunodeficiency virus type 1. Biochemistry 33:1248–1254
    [Google Scholar]
  12. Courcoul M., Patience C., Rey F., Blanc D., Harmache A., Sire J., Vigne R., Spire B. 1995; Peripheral blood mononuclear cells produce normal amounts of defective Vif-human immunodeficiency virus type 1 particles which are restricted for the preretrotranscription steps. Journal of Virology 69:2068–2074
    [Google Scholar]
  13. Crawford S., Goff S. P. 1985; A deletion mutation in the 5′ part of the pol gene of Moloney murine leukemia virus blocks proteolytic processing of the Gag and Pol polyproteins. Journal of Virology 53:899–907
    [Google Scholar]
  14. Fontenot G., Johnston K., Cohen J. C., Gallaher W. R., Robinson J., Luftig R. B. 1992; PCR amplification of HIV-1 proteinase sequences directly from lab isolates allows determination of five conserved domains. Virology 190:1–10
    [Google Scholar]
  15. Fouchier R. A., Simon J. H., Jaffe A. B., Malim M. H. 1996; Human immunodeficiency virus type 1 Vif does not influence expression or virion incorporation of gag -, pol -, and env -encoded proteins. Journal of Virology 70:8263–8269
    [Google Scholar]
  16. Friedler A., Blumenzweig I., Baraz L., Steinitz M., Kotler M., Gilon C. 1999; Peptides derived from HIV-1 Vif: a non-substrate based novel type of HIV-1 protease inhibitor. Journal of Molecular Biology 287:93–101
    [Google Scholar]
  17. Gabuzda D. H., Lawrence K., Langhoff E., Terwilliger E., Dorfman T., Haseltine W. A., Sodroski J. 1992; Role of Vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. Journal of Virology 66:6489–6495
    [Google Scholar]
  18. Garrett E. D., Tiley L. S., Cullen B. R. 1991; Rev activates expression of the human immunodeficiency virus type 1 vif and vpr gene products. Journal of Virology 65:1653–1657
    [Google Scholar]
  19. Goncalves J., Jallepalli P., Gabuzda D. H. 1994; Subcellular localization of the Vif protein of human immunodeficiency virus type 1. Journal of Virology 68:704–712
    [Google Scholar]
  20. Goncalves J., Shi B., Yang X., Gabuzda D. 1995; Biological activity of human immunodeficiency virus type 1 Vif requires membrane targeting by C-terminal basic domains. Journal of Virology 69:7196–7204
    [Google Scholar]
  21. Huvent I., Hong S. S., Fournier C., Gay B., Tournier J., Carriere C., Courcoul M., Vigne R., Spire B., Boulanger P. 1998; Interaction and co-encapsidation of human immunodeficiency virus type 1 Gag and Vif recombinant proteins. Journal of General Virology 79:1069–1081
    [Google Scholar]
  22. Kaplan A. H., Swanstrom R. 1991a; The HIV-1 Gag precursor is processed via two pathways: implications for cytotoxicity. Biomedica et Biochimica Acta 50:647–653
    [Google Scholar]
  23. Kaplan A. H., Swanstrom R. 1991b; Human immunodeficiency virus type 1 Gag proteins are processed in two cellular compartments. Proceedings of the National Academy of Sciences, USA 88:4528–4532
    [Google Scholar]
  24. Kaplan A. H., Manchester M., Swanstrom R. 1994; The activity of the protease of human immunodeficiency virus type 1 is initiated at the membrane of infected cells before the release of viral proteins and is required for release to occur with maximum efficiency. Journal of Virology 68:6782–6786
    [Google Scholar]
  25. Karageorgos L., Li P., Burrell C. 1993; Characterization of HIV replication complexes early after cell-to-cell infection. AIDS Research and Human Retroviruses 9:817–823
    [Google Scholar]
  26. Katoh I., Yoshinaka Y., Rein A., Shibuya M., Odaka T., Oroszlan S. 1985; Murine leukemia virus maturation: protease region required for conversion from ‘immature’ to ‘mature’ core form and for virus infectivity. Virology 145:280–292
    [Google Scholar]
  27. Khan M. A., Aberham C., Kao S., Akari H., Gorelick R., Bour S., Strebel K. 2001; Human immunodeficiency virus type 1 Vif protein is packaged into the nucleoprotein complex through an interaction with viral genomic RNA. Journal of Virology 75:7252–7265
    [Google Scholar]
  28. Kohl N. E., Emini E. A., Schleif W. A., Davis L. J., Heimbach J. C., Dixon R. A., Scolnick E. M., Sigal I. S. 1988; Active human immunodeficiency virus protease is required for viral infectivity. Proceedings of the National Academy of Sciences, USA 85:4686–4690
    [Google Scholar]
  29. Kotler M., Katz R. A., Skalka A. M. 1988; Activity of avian retroviral protease expressed in Escherichia coli . Journal of Virology 62:2696–2700
    [Google Scholar]
  30. Kotler M., Arad G., Hughes S. H. 1992; Human immunodeficiency virus type 1 Gag–protease fusion proteins are enzymatically active. Journal of Virology 66:6781–6783
    [Google Scholar]
  31. Kotler M., Simm M., Zhao Y. S., Sova P., Chao W., Ohnona S. F., Roller R., Krachmarov C., Potash M. J., Volsky D. J. 1997; Human immunodeficiency virus type 1 (HIV-1) protein Vif inhibits the activity of HIV-1 protease in bacteria and in vitro . Journal of Virology 71:5774–5781
    [Google Scholar]
  32. Liu H., Wu X., Newman M., Shaw G. M., Hahn B. H., Kappes J. C. 1995; The Vif protein of human and simian immunodeficiency viruses is packaged into virions and associates with viral core structures. Journal of Virology 69:7630–7638
    [Google Scholar]
  33. Ohagen A., Gabuzda D. 2000; Role of Vif in stability of the human immunodeficiency virus type 1 core. Journal of Virology 74:11055–11066
    [Google Scholar]
  34. Oroszlan S., Luftig R. B. 1990; Retroviral proteinases. Current Topics in Microbiology and Immunology 157:153–185
    [Google Scholar]
  35. Pearl L. H., Taylor W. R. 1987; A structural model for the retroviral proteases. Nature 329:351–354
    [Google Scholar]
  36. Potash M. J., Bentsman G., Muir T., Krachmarov C., Sova P., Volsky D. J. 1998; Peptide inhibitors of HIV-1 protease and viral infection of peripheral blood lymphocytes based on HIV-1 Vif. Proceedings of the National Academy of Sciences, USA 95:13865–13868
    [Google Scholar]
  37. Reddy T. R., Kraus G., Yamada O., Looney D. J., Suhasini M., Wong-Staal F. 1995; Comparative analyses of human immunodeficiency virus type 1 (HIV-1) and HIV-2 Vif mutants. Journal of Virology 69:3549–3553
    [Google Scholar]
  38. Sakai H., Shibata R., Sakuragi J., Sakuragi S., Kawamura M., Adachi A. 1993; Cell-dependent requirement of human immunodeficiency virus type 1 Vif protein for maturation of virus particles. Journal of Virology 67:1663–1666
    [Google Scholar]
  39. Schramm H. J., Boetzel J., Buttner J., Fritsche E., Gohring W., Jaeger E., Konig S., Thumfart O., Wenger T., Nagel N. E., Schramm W. 1996; The inhibition of human immunodeficiency virus proteases by ‘interface peptides’. Antiviral Research 30:155–170
    [Google Scholar]
  40. Schramm H. J., de Rosny E., Reboud-Ravaux M., Buttner J., Dick A., Schramm W. 1999; Lipopeptides as dimerization inhibitors of HIV-1 protease. Biological Chemistry 380:593–596
    [Google Scholar]
  41. Simm M., Shahabuddin M., Chao W., Allan J. S., Volsky D. J. 1995; Aberrant Gag protein composition of a human immunodeficiency virus type 1 vif mutant produced in primary lymphocytes. Journal of Virology 69:4582–4586
    [Google Scholar]
  42. Simon J. H., Southerling T. E., Peterson J. C., Meyer B. E., Malim M. H. 1995; Complementation of vif -defective human immunodeficiency virus type 1 by primate, but not nonprimate, lentivirus vif genes. Journal of Virology 69:4166–4172
    [Google Scholar]
  43. Sova P., Volsky D. J., Wang L., Chao W. 2001; Vif is largely absent from human immunodeficiency virus type 1 mature virions and associates mainly with viral particles containing unprocessed Gag. Journal of Virology 75:5504–5517
    [Google Scholar]
  44. Steinitz M., Baraz L. 2000; A rapid method for estimating the binding of ligands to ELISA microwells. Journal of Immunological Methods 238:143–150
    [Google Scholar]
  45. Strebel K., Daugherty D., Clouse K., Cohen D., Folks T., Martin M. A. 1987; The HIV ‘A’ ( sor ) gene product is essential for virus infectivity. Nature 328:728–730
    [Google Scholar]
  46. Tomasselli A. G., Heinrikson R. L. 2000; Targeting the HIV–protease in AIDS therapy: a current clinical perspective. Biochimica et Biophysica Acta 1477:189–214
    [Google Scholar]
  47. Vogt V. M. 1996; Proteolytic processing and particle maturation. Current Topics in Microbiology and Immunology 214:95–131
    [Google Scholar]
  48. von Schwedler U., Song J., Aiken C., Trono D. 1993; Vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. Journal of Virology 67:4945–4955
    [Google Scholar]
  49. Wills J., Craven R., Achacoso J. 1989; Form, function, and use of retroviral Gag proteins. AIDS 5:639–654
    [Google Scholar]
  50. Yang X., Goncalves J., Gabuzda D. 1996; Phosphorylation of Vif and its role in HIV-1 replication. Journal of Biological Chemistry 271:10121–10129
    [Google Scholar]
  51. Zybarth G., Krausslich H. G., Partin K., Carter C. 1994; Proteolytic activity of novel human immunodeficiency virus type 1 proteinase proteins from a precursor with a blocking mutation at the N terminus of the PR domain. Journal of Virology 68:240–250
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-83-9-2225
Loading
/content/journal/jgv/10.1099/0022-1317-83-9-2225
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error