Cloning of complete genome sets of six dsRNA viruses using an improved cloning method for large dsRNA genes Free

Abstract

Cloning full-length large (>3 kb) dsRNA genome segments from small amounts of dsRNA has thus far remained problematic. Here, a single-primer amplification sequence-independent dsRNA cloning procedure was perfected for large genes and tailored for routine use to clone complete genome sets or individual genes. Nine complete viral genome sets were amplified by PCR, namely those of two human rotaviruses, two African horsesickness viruses (AHSV), two equine encephalosis viruses (EEV), one bluetongue virus (BTV), one reovirus and bacteriophage Φ12. Of these amplified genomes, six complete genome sets were cloned for viruses with genes ranging in size from 0·8 to 6·8 kb. Rotavirus dsRNA was extracted directly from stool samples. Co-expressed EEV VP3 and VP7 assembled into core-like particles that have typical orbivirus capsomeres. This work presents the first EEV sequence data and establishes that EEV genes have the same conserved termini (5′ GUU and UAC 3′) and coding assignment as AHSV and BTV. To clone complete genome sets, one-tube reactions were developed for oligo-ligation, cDNA synthesis and PCR amplification. The method is simple and efficient compared to other methods. Complete genomes can be cloned from as little as 1 ng dsRNA and a considerably reduced number of PCR cycles (22–30 cycles compared to 30–35 of other methods). This progress with cloning large dsRNA genes is important for recombinant vaccine development and determination of the role of terminal sequences for replication and gene expression.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-9-2215
2002-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/9/0832215a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-9-2215&mimeType=html&fmt=ahah

References

  1. Anzola J. V., Xu Z. K., Asamizu T., Nuss D. L. 1987; Segment-specific inverted repeats found adjacent to conserved terminal sequences in wound tumor virus genome and defective interfering RNAs. Proceedings of the National Academy of Sciences, USA 84:8301–8305
    [Google Scholar]
  2. Attoui H., de Micco P., de Lamballerie X. 1997; Complete nucleotide sequence of Colorado tick fever virus segments M6, S1 and S2. Journal of General Virology 78:2895–2899
    [Google Scholar]
  3. Attoui H., Charrel R. N., Billoir F., Cantaloube J.-F., de Micco P., de Lamballerie X. 1998; Comparative sequence analysis of American, European and Asian isolates of viruses in the genus Coltivirus . Journal of General Virology 79:2481–2489
    [Google Scholar]
  4. Attoui H., Billoir F., Cantaloube J.-F., Biagini P., de Micco P., de Lamballerie X. 2000a; Strategies for the sequence determination of viral dsRNA genomes. Journal of Virological Methods 89:147–158
    [Google Scholar]
  5. Attoui H., Billoir F., Biagini P., de Micco P., de Lamballerie X. 2000b; Complete sequence determination and genetic analysis of Banna virus and Kadipiro virus: proposal for assignment to a new genus ( Seadornavirus ) within the family Reoviridae . Journal of General Virology 81:1507–1515
    [Google Scholar]
  6. Bigot Y., Drezen J.-M., Sizaret P.-Y., Rabouille A., Hamelin M.-H., Periquet G. 1995; The genome segments of DpRV, a commensal reovirus of the wasp Diadromus pulchellus (Hymenoptera). Virology 210:109–119
    [Google Scholar]
  7. Bremer C. W., du Plessis D. H., van Dijk A. A. 1994; Baculovirus expression of non-structural protein NS2 and core protein VP7 of African horsesickness virus serotype 3 and their use as antigens in an indirect ELISA. Journal of Virological Methods 48:245–256
    [Google Scholar]
  8. Brussow H., Bruttin A., Marc-Martin S. 1990; Polypeptide composition of rotavirus empty capsids and their possible use as a subunit vaccine. Journal of Virology 64:3635–3642
    [Google Scholar]
  9. Cashdollar L. W., Esparza J., Hudson G. R., Chmelo R., Lee P. W. K., Joklik W. K. 1982; Cloning the double-stranded RNA genes of reovirus: sequence of the cloned S2 gene. Proceedings of the National Academy of Sciences, USA 79:7644–7648
    [Google Scholar]
  10. Cashdollar L. W., Chmelo R., Esparza J., Hudson G. R., Joklik W. K. 1984; Molecular cloning of the complete genome of reovirus serotype 3. Virology 133:191–196
    [Google Scholar]
  11. Chen Z., Lambden P. R., Lau J., Caul E. O., Clarke I. N. 2002; Human group C rotavirus: completion of the genome sequence and gene coding assignments of a non-cultivatable rotavirus. Virus Research 83:179–187
    [Google Scholar]
  12. Cloete M., du Plessis D. H., van Dijk A. A., Huismans H., Viljoen G. J. 1994; Vaccinia virus expression of the VP7 protein of South African bluetongue virus serotype 4 and its use as an antigen in a capture ELISA. Archives of Virology 135:405–418
    [Google Scholar]
  13. Cooke S. J., Lambden P. R., Caul E. O., Clarke I. N. 1991; Molecular cloning, sequence analysis and coding assignment of the major inner capsid protein gene of human group C rotavirus. Virology 184:781–785
    [Google Scholar]
  14. Crawford S. E., Labbe M., Cohen J., Burroughs M. H., Zhou Y. J., Estes M. K. 1994; Characterization of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. Journal of Virology 68:5945–5952
    [Google Scholar]
  15. Crawford S. E., Estes M. K., Ciarlet M., Barone C., O′Neal C. M., Cohen J., Conner M. E. 1999; Heterotypic protection and induction of a broad heterotypic neutralization response by rotavirus-like particles. Journal of Virology 73:4813–4822
    [Google Scholar]
  16. du Plessis M., Cloete M., Aitchison H., van Dijk A. A. 1998; Protein aggregation complicates the development of baculovirus-expressed African horsesickness virus serotype 5 VP2 subunit vaccines. Onderstepoort Journal of Veterinary Research 65:321–329
    [Google Scholar]
  17. Franz T., Dear T. N. 1998; AT vector with very low background levels. Trends Journals Technical Tips Online 25:T01498
    [Google Scholar]
  18. Gottlieb P., Wei H., Potgieter C., Toporovsky I. 2002a; Characterization of phi12, a bacteriophage related to phi6: nucleotide sequence of the small and middle double-stranded RNA. Virology 293:118–124
    [Google Scholar]
  19. Gottlieb P., Potgieter C., Wei H., Toporovsky I. 2002b; Characterization of bacteriophage phi12, a bacteriophage related to phi6: nucleotide sequence of the large double-stranded RNA. Virology 295:266–271
    [Google Scholar]
  20. James V. L. A., Lambden P. R., Deng Y., Caul E. O., Clarke I. N. 1999; Molecular characterization of human group C rotavirus genes 6, 7 and 9. Journal of General Virology 80:3181–3187
    [Google Scholar]
  21. Koekemoer J. J. O., Potgieter A. C., Paweska J. T., van Dijk A. A. 2000; Development of probes for typing African horsesickness virus isolates using a complete set of cloned VP2-genes. Journal of Virological Methods 88:135–144
    [Google Scholar]
  22. Kowalik T. F., Yang Y.-Y., Li J. K. K. 1990; Molecular cloning and comparative sequence analyses of bluetongue virus S1 segments by selective synthesis of specific full-length DNA copies of dsRNA genes. Virology 177:820–823
    [Google Scholar]
  23. Lambden P. R., Cooke S. J., Caul E. O., Clarke I. N. 1992; Cloning of noncultivatable human rotavirus by single primer amplification. Journal of Virology 66:1817–1822
    [Google Scholar]
  24. McCarthy M. 1999; Rotavirus vaccine put on hold in USA after intussusception reports. Lancet 354:309
    [Google Scholar]
  25. McNeal M. M., Sheridan J. F., Ward R. L. 1992; Active protection against rotavirus infection of mice following intraperitoneal immunization. Virology 191:150–157
    [Google Scholar]
  26. Madore H. P., Estes M. K., Zarley C. D., Hu B., Parsons S., Digravio D., Greiner S., Smith R., Jiang B., Corsaro B., Barniak V., Crawford S., Conner M. E. 1999; Biochemical and immunologic comparison of virus-like particles for a rotavirus subunit vaccine. Vaccine 17:2461–2471
    [Google Scholar]
  27. Maree S., Durbach S., Huismans H. 1998; Intracellular production of African horsesickness virus core-like particles by expression of the two major core proteins, VP3 and VP7, in insect cells. Journal of General Virology 79:333–337
    [Google Scholar]
  28. Martinez-Torrecuadrada J. L., Diaz-Laviada M., Roy P., Sanchez C., Vela C., Sanchez-Vizcaino J. M., Casal J. I. 1996; Full protection against African horsesickness (AHS) in horses induced by baculovirus-derived AHS virus serotype 4 VP2, VP5 and VP7. Journal of General Virology 77:1211–1221
    [Google Scholar]
  29. Mertens P. P. C., Arella M., Attoui H., Belloncik S., Bergoin M., Boccardo G., Booth T. F., Chiu W., Diprose J. M., Duncan R. and others 2000; In Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses . pp 395–480 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. San Diego: Academic Press;
  30. Mindich L., Qiao X., Qiao J., Onodera S., Romantschuk M., Hoogstraten D. 1999; Isolation of additional bacteriophages with genomes of segmented double-stranded RNA. Journal of Bacteriology 181:4505–4508
    [Google Scholar]
  31. Roy P., Urakawa T., van Dijk A. A., Erasmus B. J. 1990; Recombinant virus vaccine for bluetongue disease in sheep. Journal of Virology 64:1998–2003
    [Google Scholar]
  32. Roy P., Bishop D. H. L., LeBlois H., Erasmus B. J. 1994; Long-lasting protection of sheep against bluetongue challenge after vaccination with virus-like particles: evidence for homologous and partial heterologous protection. Vaccine 12:805–811
    [Google Scholar]
  33. Roy P., Bishop D. H. L., Howard S., Aitchison H., Erasmus B. J. 1996; Recombinant baculovirus-synthesized African horsesickness virus (AHSV) outer-capsid protein VP2 provides protection against virulent AHSV challenge. Journal of General Virology 77:2053–2057
    [Google Scholar]
  34. Sabara M., Parker M., Aha P., Cosco C., Gibbons E., Parsons S., Babiuk L. A. 1991; Assembly of double-shelled rotaviruslike particles by simultaneous expression of recombinant VP6 and VP7 proteins. Journal of Virology 65:6994–6997
    [Google Scholar]
  35. Sailleau C., Hamblin C., Paweska J. T., Zientara S. 2000; Identification and differentiation of the nine African horse sickness virus serotypes by RT–PCR amplification of the serotype-specific genome segment 2. Journal of General Virology 81:831–837
    [Google Scholar]
  36. Scanlen M., Paweska J. T., Verschoor J. A., van Dijk A. A. 2002; The protective efficacy of a recombinant VP2-based African horsesickness subunit vaccine candidate is determined by adjuvant. Vaccine 20:1079–1088
    [Google Scholar]
  37. Stone-Marschat M. A., Moss S. R., Burrage T. G., Barber M. L., Roy P., Laegreid W. W. 1996; Immunization with VP2 is sufficient for protection against lethal challenge with African horsesickness virus type 4. Virology 220:219–222
    [Google Scholar]
  38. van Dijk A. A. 1993; Development of recombinant vaccines against bluetongue. Biotechnology Advances 11:1–12
    [Google Scholar]
  39. van Dijk A. A. 1999; African horsesickness vaccine development. In Proceedings of the VIII International Conference on Equine Infectious Diseases pp 262–265 Edited by Wernery U., Wade J. F., Mumford J. A., Kaaden O.-R. Newmarket, UK: R&W Publications;
    [Google Scholar]
  40. Viljoen G. J., Huismans H. 1989; The characterization of equine encephalosis virus and the development of genomic probes. Journal of General Virology 70:2007–2015
    [Google Scholar]
  41. Vreede F. T., Cloete M., Napier G. B., van Dijk A. A., Viljoen G. J. 1998; Sequence-independent amplification and cloning of large dsRNA virus genome segments by poly(dA)-oligonucleotide ligation. Journal of Virological Methods 72:243–247
    [Google Scholar]
  42. Xu Z. K., Anzola J. V., Nalin C. M., Nuss D. L. 1989; The 3′-terminal sequence of a wound tumor virus transcript can influence conformational and functional properties associated with the 5′-terminus. Virology 170:511–522
    [Google Scholar]
  43. Zhang Y.-P., Rowhani A. 2000; A strategy for rapid cDNA cloning from double-stranded RNA templates isolated from plants infected with RNA viruses by using Taq DNA polymerase. Journal of Virological Methods 84:59–63
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-9-2215
Loading
/content/journal/jgv/10.1099/0022-1317-83-9-2215
Loading

Data & Media loading...

Most cited Most Cited RSS feed