1887

Abstract

Bovine viral diarrhoea virus (BVDV) envelope glycoprotein E interacts with highly sulphated heparin-like glycosaminoglycans (GAGs) located on the cell surface as an early step in virus infection of cells. Site-directed mutagenesis of recombinant E was undertaken and analysis of mutants by heparin-affinity chromatography and cell surface binding showed that a cluster of basic amino acids (KKLENKSK) near the C terminus of E was essential for binding. Mutants with amino acid substitutions of lysine residues 481 and 485 in E reduced the binding of E to immobilized heparin and cellular GAGs but retained ribonuclease activity. In contrast to normal E, E that was unable to bind to cells also failed to inhibit BVDV infection of cells when the cells were pre-incubated with E. It is proposed that the cluster of basic residues (KKLENKSK) localized at the C-terminal end of E constitutes a GAG-binding site.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-9-2153
2002-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/9/0832153a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-9-2153&mimeType=html&fmt=ahah

References

  1. Byrnes A. P., Griffin D. E. 1998; Binding of Sindbis virus to cell surface heparan sulfate. Journal of Virology 72:7349–7356
    [Google Scholar]
  2. Chen Y., Maguire T., Hileman R. E., Fromm J. R., Esko J. D., Linhardt R. J., Marks R. M. 1997; Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nature Medicine 3:866–871
    [Google Scholar]
  3. Damon I., Murphy P. M., Moss B. 1998; Broad spectrum chemokine antagonistic activity of a human poxvirus chemokine homolog. Proceedings of the National Academy of Sciences, USA 95:6403–6407
    [Google Scholar]
  4. Davies J. A., Fisher C. E., Barnett M. W. 2001; Glycosaminoglycans in the study of mammalian organ development. Biochemical Society Transactions 29:166–171
    [Google Scholar]
  5. Dechecchi M. C., Melotti P., Bonizzato A., Santacatterina M., Chilosi M., Cabrini G. 2001; Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. Journal of Virology 75:8772–8780
    [Google Scholar]
  6. Di Caro A., Perola E., Bartolini B., Marzano M., Liverani L., Mascellani G., Benedetto A., Cellai L. 1999; Fractions of chemically oversulphated galactosaminoglycan sulphates inhibit three enveloped viruses: human immunodeficiency virus type 1, herpes simplex virus type 1 and human cytomegalovirus. Antiviral Chemistry & Chemotherapy 10:33–38
    [Google Scholar]
  7. Feldman S. A., Hendry R. M., Beeler J. A. 1999; Identification of a linear heparin binding domain for human respiratory syncytial virus attachment glycoprotein G. Journal of Virology 73:6610–6617
    [Google Scholar]
  8. Feldman S. A., Audet S., Beeler J. A. 2000; The fusion glycoprotein of human respiratory syncytial virus facilitates virus attachment and infectivity via an interaction with cellular heparan sulfate. Journal of Virology 74:6442–6447
    [Google Scholar]
  9. Flynn S. J., Ryan P. 1996; The receptor-binding domain of pseudorabies virus glycoprotein gC is composed of multiple discrete units that are functionally redundant. Journal of Virology 70:1355–1364
    [Google Scholar]
  10. Fry E. E., Lea S. M., Jackson T., Newman J. W., Ellard F. M., Blakemore W. E., Abu-Ghazaleh R., Samuel A., King A. M., Stuart D. I. 1999; The structure and function of a foot-and-mouth disease virus–oligosaccharide receptor complex. EMBO Journal 18:543–554
    [Google Scholar]
  11. Hileman R. E., Fromm J. R., Weiler J. M., Linhardt R. J. 1998; Glycosaminoglycan–protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. Bioessays 20:156–167
    [Google Scholar]
  12. Hilgard P., Stockert R. 2000; Heparan sulfate proteoglycans initiate dengue virus infection of hepatocytes. Hepatology 32:1069–1077
    [Google Scholar]
  13. Hirose J., Kawashima H., Yoshie O., Tashiro K., Miyasaka M. 2001; Versican interacts with chemokines and modulates cellular responses. Journal of Biological Chemistry 276:5228–5234
    [Google Scholar]
  14. Hulst M. M., Himes G., Newbigin E., Moormann R. J. 1994; Glycoprotein E2 of classical swine fever virus: expression in insect cells and identification as a ribonuclease. Virology 200:558–565
    [Google Scholar]
  15. Hulst M. M., Panoto F. E., Hoekman A., van Gennip H. G., Moormann R. J. 1998; Inactivation of the RNase activity of glycoprotein Erns of classical swine fever virus results in a cytopathogenic virus. Journal of Virology 72:151–157
    [Google Scholar]
  16. Hulst M. M., van Gennip H. G., Moormann R. J. 2000; Passage of classical swine fever virus in cultured swine kidney cells selects virus variants that bind to heparan sulfate due to a single amino acid change in envelope protein Erns. Journal of Virology 74:9553–9561
    [Google Scholar]
  17. Hussain M. M., Obunike J. C., Shaheen A., Hussain M. J., Shelness G. S., Goldberg I. J. 2000; High affinity binding between lipoprotein lipase and lipoproteins involves multiple ionic and hydrophobic interactions, does not require enzyme activity, and is modulated by glycosaminoglycans. Journal of Biological Chemistry 275:29324–29330
    [Google Scholar]
  18. Iqbal M., Flick-Smith H., McCauley J. W. 2000; Interactions of bovine viral diarrhoea virus glycoprotein Erns with cell surface glycosaminoglycans. Journal of General Virology 81:451–459
    [Google Scholar]
  19. Jackson T., Ellard F. M., Ghazaleh R. A., Brookes S. M., Blakemore W. E., Corteyn A. H., Stuart D. I., Newman J. W., King A. M. 1996; Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. Journal of Virology 70:5282–5287
    [Google Scholar]
  20. Koyama T., Parkinson J. F., Sie P., Bang N. U., Muller-Berghaus G., Preissner K. T. 1991; Different glycoforms of human thrombomodulin. Their glycosaminoglycan- dependent modulatory effects on thrombin inactivation by heparin cofactor II and antithrombin III. European Journal of Biochemistry 198:563–570
    [Google Scholar]
  21. Liang X., Babiuk L. A., Zamb T. J. 1993; Mapping of heparin-binding structures on bovine herpesvirus 1 and pseudorabies virus gIII glycoproteins. Virology 194:233–243
    [Google Scholar]
  22. Lortat-Jacob H., Grimaud J. A. 1991; Interferon-γ binds to heparan sulfate by a cluster of amino acids located in the C-terminal part of the molecule. FEBS Letters 280:152–154
    [Google Scholar]
  23. Lortat-Jacob H., Turnbull J. E., Grimaud J. A. 1995; Molecular organization of the interferon γ-binding domain in heparan sulphate. Biochemical Journal 310:497–505
    [Google Scholar]
  24. Mårdberg K., Trybala E., Glorioso J. C., Bergström T. 2001; Mutational analysis of the major heparan sulfate-binding domain of herpes simplex virus type 1 glycoprotein C. Journal of General Virology 82:1941–1950
    [Google Scholar]
  25. Martínez I., Melero J. A. 2000; Binding of human respiratory syncytial virus to cells: implication of sulfated cell surface proteoglycans. Journal of General Virology 81:2715–2722
    [Google Scholar]
  26. Meyers G., Saalmuller A., Buttner M. 1999; Mutations abrogating the RNase activity in glycoprotein Erns of the pestivirus classical swine fever virus lead to virus attenuation. Journal of Virology 73:10224–10235
    [Google Scholar]
  27. Mummery R. S., Rider C. C. 2000; Characterization of the heparin-binding properties of IL-6. Journal of Immunology 165:5671–5679
    [Google Scholar]
  28. Pocock D. H., Howard C. J., Clarke M. C., Brownlie J. 1987; Variation in the intracellular polypeptide profiles from different isolates of bovine virus diarrhoea virus. Archives of Virology 94:43–53
    [Google Scholar]
  29. Pringle C. R. 1998; The universal system of virus taxonomy of the International Committee on Virus Taxonomy (ICTV), including new proposals ratified since publication of the Sixth ICTV Report in 1995. Archives of Virology 143:203–210
    [Google Scholar]
  30. Proudfoot A. E., Fritchley S., Borlat F., Shaw J. P., Vilbois F., Zwahlen C., Trkola A., Marchant D., Clapham P. R., Wells T. N. 2001; The BBXB motif of RANTES is the principal site for heparin binding and controls receptor selectivity. Journal of Biological Chemistry 276:10620–10626
    [Google Scholar]
  31. Rajcani J., Vojvodova A. 1998; The role of herpes simplex virus glycoproteins in the virus replication cycle. Acta Virologica 42:103–118
    [Google Scholar]
  32. Rice C. M. 1996; Flaviviridae : the viruses and their replication. In Fields Virology pp 931–959 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  33. Rumenapf T., Unger G., Strauss J. H., Thiel H.-J. 1993; Processing of the envelope glycoproteins of pestiviruses. Journal of Virology 67:3288–3294
    [Google Scholar]
  34. Sa-Carvalho D., Rieder E., Baxt B., Rodarte R., Tanuri A., Mason P. W. 1997; Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. Journal of Virology 71:5115–5123
    [Google Scholar]
  35. Schneider R., Unger G., Stark R., Schneider-Scherzer E., Thiel H.-J. 1993; Identification of a structural glycoprotein of an RNA virus as a ribonuclease. Science 261:1169–1171
    [Google Scholar]
  36. Seet B. T., Barrett J., Robichaud J., Shilton B., Singh R., McFadden G. 2001; Glycosaminoglycan binding properties of the myxoma virus CC-chemokine inhibitor, M-T1. Journal of Biological Chemistry 276:30504–30513
    [Google Scholar]
  37. Smith S. A., Mullin N. P., Parkinson J., Shchelkunov S. N., Totmenin A. V., Loparev V. N., Srisatjaluk R., Reynolds D. N., Keeling K. L., Justus D. E., Barlow P. N., Kotwal G. J. 2000; Conserved surface-exposed K/R-X-K/R motifs and net positive charge on poxvirus complement control proteins serve as putative heparin binding sites and contribute to inhibition of molecular interactions with human endothelial cells: a novel mechanism for evasion of host defense. Journal of Virology 74:5659–5666
    [Google Scholar]
  38. Sobel M., Soler D. F., Kermode J. C., Harris R. B. 1992; Localization and characterization of a heparin binding domain peptide of human von Willebrand factor. Journal of Biological Chemistry 267:8857–8862
    [Google Scholar]
  39. Su C. M., Liao C. L., Lee Y. L., Lin Y. L. 2001; Highly sulfated forms of heparin sulfate are involved in Japanese encephalitis virus infection. Virology 286:206–215
    [Google Scholar]
  40. Tal-Singer R., Peng C., Ponce De Leon M., Abrams W. R., Banfield B. W., Tufaro F., Cohen G. H., Eisenberg R. J. 1995; Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules. Journal of Virology 69:4471–4483
    [Google Scholar]
  41. Terry-Allison T., Montgomery R. I., Warner M. S., Geraghty R. J., Spear P. G. 2001; Contributions of gD receptors and glycosaminoglycan sulfation to cell fusion mediated by herpes simplex virus 1. Virus Research 74:39–45
    [Google Scholar]
  42. Thiel H.-J., Plagemann G. W., Moennig V. 1996; The pestiviruses. In Fields Virology pp 1059–1073 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  43. Trybala E., Bergström T., Svennerholm B., Jeansson S., Glorioso J. C., Olofsson S. 1994; Localization of a functional site on herpes simplex virus type 1 glycoprotein C involved in binding to cell surface heparan sulphate. Journal of General Virology 75:743–752
    [Google Scholar]
  44. Windisch J. M., Schneider R., Stark R., Weiland E., Meyers G., Thiel H.-J. 1996; RNase of classical swine fever virus: biochemical characterization and inhibition by virus-neutralizing monoclonal antibodies. Journal of Virology 70:352–358
    [Google Scholar]
  45. Wuppermann F. N., Hegemann J. H., Jantos C. A. 2001; Heparan sulfate-like glycosaminoglycan is a cellular receptor for Chlamydia pneumoniae . Journal of Infectious Diseases 184:181–187
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-9-2153
Loading
/content/journal/jgv/10.1099/0022-1317-83-9-2153
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error