1887

Abstract

Using infections with lymphocytic choriomeningitis virus (LCMV) and vesicular stomatitis virus in mice as model systems, we have investigated the ability of antigen-primed CD8 T cells generated in the context of viral infections to produce IL-2. Our results indicate that acute immunizing infection normally leads to generation of high numbers of IL-2-producing antigen-specific CD8 T cells. By costaining for IL-2 and IFN-γ intracellularly, we found that IL-2-producing cells predominantly constitute a subset of cells also producing IFN-γ. Comparison of the kinetics of generation revealed that IL-2-producing cells appear slightly delayed compared with the majority of IFN-γ producing cells, and the relative frequency of the IL-2-producing subset increases with transition into the memory phase. In contrast to acute immunizing infection, few IL-2-producing cells are generated during chronic LCMV infection. Furthermore, in MHC class II-deficient mice, which only transiently control LCMV infection, IL-2-producing CD8 T cells are initially generated, but by 4 weeks after infection this subset has nearly disappeared. Eventually the capacity to produce IFN-γ also becomes impaired, while cell numbers are maintained at a level similar to those in wild-type mice controlling the infection. Taken together, these findings indicate that phenotyping of T cell populations based on capacity to produce cytokines, and especially IL-2, can provide important information as to the functional status of the analysed cell subset. Specifically, combined analysis of the capacity to produce IL-2 and IFN-γ can be used as a predictor for loss of function within the CD8 T cell compartment.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-9-2123
2002-09-01
2020-08-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/9/0832123a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-9-2123&mimeType=html&fmt=ahah

References

  1. Ahmed R., Butler L. D., Bhatti L.. 1988; T4+ T helper cell function in vivo: differential requirement for induction of antiviral cytotoxic T-cell and antibody responses. Journal of Virology62:2102–2106
    [Google Scholar]
  2. Andreasen S. O., Christensen J. E., Marker O., Thomsen A. R.. 2000; Role of CD40 ligand and CD28 in induction and maintenance of antiviral CD8+ effector T cell responses. Journal of Immunology164:3689–3697
    [Google Scholar]
  3. Bachmann M. F., Zinkernagel R. M., Oxenius A.. 1998; Immune responses in the absence of costimulation: viruses know the trick. Journal of Immunology161:5791–5794
    [Google Scholar]
  4. Bartholdy C., Christensen J. P., Wodarz D., Thomsen A. R.. 2000; Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in gamma interferon-deficient mice infected with lymphocytic choriomeningitis virus. Journal of Virology74:10304–10311
    [Google Scholar]
  5. Bennett S. R., Carbone F. R., Karamalis F., Flavell R. A., Miller J. F., Heath W. R.. 1998; Help for cytotoxic-T-cell responses is mediated by CD40 signalling [see comments]. Nature393:478–480
    [Google Scholar]
  6. Bodmer H., Obert G., Chan S., Benoist C., Mathis D.. 1993; Environmental modulation of the autonomy of cytotoxic T lymphocytes. European Journal of Immunology23:1649–1654
    [Google Scholar]
  7. Buller R. M., Holmes K. L., Hugin A., Frederickson T. N., Morse H. C.. 1987; Induction of cytotoxic T-cell responses in vivo in the absence of CD4 helper cells. Nature328:77–79
    [Google Scholar]
  8. Butz E. A., Bevan M. J.. 1998; Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity8:167–175
    [Google Scholar]
  9. Champagne P., Ogg G. S., King A. S., Knabenhans C., Ellefsen K., Nobile M., Appay V., Rizzardi G. P., Fleury S., Lipp M.. others 2001; Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature410:106–111
    [Google Scholar]
  10. Christensen J. P., Marker O., Thomsen A. R.. 1994; The role of CD4+ T cells in cell-mediated immunity to LCMV: studies in MHC class I and class II deficient mice. Scandinavian Journal of Immunology40:373–382
    [Google Scholar]
  11. Christensen J. P., Bartholdy C., Wodarz D., Thomsen A. R.. 2001; Depletion of CD4+ T cells precipitates immunopathology in immunodeficient mice infected with a noncytocidal virus. Journal of Immunology166:3384–3391
    [Google Scholar]
  12. Cousens L. P., Orange J. S., Biron C. A.. 1995; Endogenous IL-2 contributes to T cell expansion and IFN-gamma production during lymphocytic choriomeningitis virus infection. Journal of Immunology155:5690–5699
    [Google Scholar]
  13. den Boer A. T., Diehl L., van Mierlo G. J., van der Voort E. I., Fransen M. F., Krimpenfort P., Melief C. J., Offringa R., Toes R. E.. 2001; Longevity of antigen presentation and activation status of APC are decisive factors in the balance between CTL immunity versus tolerance. Journal of Immunology167:2522–2528
    [Google Scholar]
  14. Ehl S., Klenerman P., Zinkernagel R. M., Bocharov G.. 1998; The impact of variation in the number of CD8+ T-cell precursors on the outcome of virus infection. Cellular Immunology189:67–73
    [Google Scholar]
  15. Gallimore A., Glithero A., Godkin A., Tissot A. C., Pluckthun A., Elliott T., Hengartner H., Zinkernagel R.. 1998; Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. Journal of Experimental Medicine187:1383–1393
    [Google Scholar]
  16. Gerlach J. T., Diepolder H. M., Jung M. C., Gruener N. H., Schraut W. W., Zachoval R., Hoffmann R., Schirren C. A., Santantonio T., Pape G. R.. 1999; Recurrence of hepatitis C virus after loss of virus-specific CD4+ T-cell response in acute hepatitis C. Gastroenterology117:933–941
    [Google Scholar]
  17. Gruener N. H., Lechner F., Jung M. C., Diepolder H., Gerlach T., Lauer G., Walker B., Sullivan J., Phillips R., Pape G. R.. others 2001; Sustained dysfunction of antiviral CD8+ T lymphocytes after infection with hepatitis C virus. Journal of Virology75:5550–5558
    [Google Scholar]
  18. Hudrisier D., Oldstone M. B., Gairin J. E.. 1997; The signal sequence of lymphocytic choriomeningitis virus contains an immunodominant cytotoxic T cell epitope that is restricted by both H-2Db and H-2Kb molecules. Virology234:62–73
    [Google Scholar]
  19. Itoh Y., Germain R. N.. 1997; Single cell analysis reveals regulated hierarchical T cell antigen receptor signaling thresholds and intraclonal heterogeneity for individual cytokine responses of CD4+ T cells. Journal of Experimental Medicine186:757–766
    [Google Scholar]
  20. Kasaian M. T., Biron C. A.. 1989; The activation of IL-2 transcription in L3T4+ and Lyt-2+ lymphocytes during virus infection in vivo. Journal of Immunology142:1287–1292
    [Google Scholar]
  21. Ke Y., Ma H., Kapp J. A.. 1998; Antigen is required for the activation of effector activities, whereas interleukin 2 is required for the maintenance of memory in ovalbumin- specific, CD8+ cytotoxic T lymphocytes. Journal of Experimental Medicine187:49–57
    [Google Scholar]
  22. Kennedy M. K., Glaccum M., Brown S. N., Butz E. A., Viney J. L., Embers M., Matsuki N., Charrier K., Sedger L., Willis C. R.. others 2000; Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. Journal of Experimental Medicine191:771–780
    [Google Scholar]
  23. Kostense S., Ogg G. S., Manting E. H., Gillespie G., Joling J., Vandenberghe K., Veenhof E. Z., van Baarle D., Jurriaans S., Klein M. R.. and others 2001; High viral burden in the presence of major HIV-specific CD8+ T cell expansions: evidence for impaired CTL effector function. European Journal of Immunology31:677–686
    [Google Scholar]
  24. Ku C. C., Murakami M., Sakamoto A., Kappler J., Marrack P.. 2000; Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science288:675–678
    [Google Scholar]
  25. Lieberman J., Shankar P., Manjunath N., Andersson J.. 2001; Dressed to kill? A review of why antiviral CD8 T lymphocytes fail to prevent progressive immunodeficiency in HIV-1 infection. Blood98:1667–1677
    [Google Scholar]
  26. Manjunath N., Shankar P., Wan J., Weninger W., Crowley M. A., Hieshima K., Springer T. A., Fan X., Shen H., Lieberman J.. others 2001; Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. Journal of Clinical Investigation108:871–878
    [Google Scholar]
  27. Masopust D., Vezys V., Marzo A. L., Lefrancois L.. 2001; Preferential localization of effector memory cells in nonlymphoid tissue. Science291:2413–2417
    [Google Scholar]
  28. Mizuochi T., Hugin A. W., Morse H. C.III., Singer A., Buller R. M.. 1989; Role of lymphokine-secreting CD8+ T cells in cytotoxic T lymphocyte responses against vaccinia virus. Journal of Immunology142:270–273
    [Google Scholar]
  29. Moskophidis D., Cobbold S. P., Waldmann H., Lehmann-Grube F.. 1987; Mechanism of recovery from acute virus infection: treatment of lymphocytic choriomeningitis virus-infected mice with monoclonal antibodies reveals that Lyt-2+ T lymphocytes mediate clearance of virus and regulate the antiviral antibody response. Journal of Virology61:1867–1874
    [Google Scholar]
  30. Moskophidis D., Lechner F., Hengartner H., Zinkernagel R. M.. 1994; MHC class I and non-MHC-linked capacity for generating an anti-viral CTL response determines susceptibility to CTL exhaustion and establishment of virus persistence in mice. Journal of Immunology152:4976–4983
    [Google Scholar]
  31. Murali-Krishna K., Altman J. D., Suresh M., Sourdive D. J., Zajac A. J., Miller J. D., Slansky J., Ahmed R.. 1998; Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity8:177–187
    [Google Scholar]
  32. Nansen A., Jensen T., Christensen J. P., Andreasen S. O., Ropke C., Marker O., Thomsen A. R.. 1999; Compromised virus control and augmented perforin-mediated immunopathology in IFN-gamma-deficient mice infected with lymphocytic choriomeningitis virus. Journal of Immunology163:6114–6122
    [Google Scholar]
  33. Oldstone M. B., Whitton J. L., Lewicki H., Tishon A.. 1988; Fine dissection of a nine amino acid glycoprotein epitope, a major determinant recognized by lymphocytic choriomeningitis virus-specific class I-restricted H-2Db cytotoxic T lymphocytes. Journal of Experimental Medicine168:559–570
    [Google Scholar]
  34. Oxenius A., Bachmann M. F., Ashton-Rickardt P. G., Tonegawa S., Zinkernagel R. M., Hengartner H.. 1995; Presentation of endogenous viral proteins in association with major histocompatibility complex class II: on the role of intracellular compartmentalization, invariant chain and the TAP transporter system. European Journal of Immunology25:3402–3411
    [Google Scholar]
  35. Ridge J. P., Di Rosa F., Matzinger P.. 1998; A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell [see comments]. Nature393:474–478
    [Google Scholar]
  36. Rosenberg A. S., Mizuochi T., Singer A.. 1986; Analysis of T-cell subsets in rejection of Kb mutant skin allografts differing at class I MHC. Nature322:829–831
    [Google Scholar]
  37. Saparov A., Wagner F. H., Zheng R., Oliver J. R., Maeda H., Hockett R. D., Weaver C. T.. 1999; Interleukin-2 expression by a subpopulation of primary T cells is linked to enhanced memory/effector function. Immunity11:271–280
    [Google Scholar]
  38. Sarawar S. R., Lee B. J., Reiter S. K., Schoenberger S. P.. 2001; Stimulation via CD40 can substitute for CD4 T cell function in preventing reactivation of a latent herpesvirus. Proceedings of the National Academy of Sciences, USA98:6325–6329
    [Google Scholar]
  39. Schoenberger S. P., Toes R. E., van der Voort E. I., Offringa R., Melief C. J.. 1998; T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions [see comments]. Nature393:480–483
    [Google Scholar]
  40. Schulz M., Aichele P., Vollenweider M., Bobe F. W., Cardinaux F., Hengartner H., Zinkernagel R. M.. 1989; Major histocompatibility complex-dependent T cell epitopes of lymphocytic choriomeningitis virus nucleoprotein and their protective capacity against viral disease. European Journal of Immunology19:1657–1667
    [Google Scholar]
  41. Slifka M. K., Whitton J. L.. 2000; Activated and memory CD8+ T cells can be distinguished by their cytokine profiles and phenotypic markers. Journal of Immunology164:208–216
    [Google Scholar]
  42. Thomsen A. R., Johansen J., Marker O., Christensen J. P.. 1996; Exhaustion of CTL memory and recrudescence of viremia in lymphocytic choriomeningitis virus-infected MHC class II-deficient mice and B cell-deficient mice. Journal of Immunology157:3074–3080
    [Google Scholar]
  43. Varga S. M., Welsh R. M.. 2000; High frequency of virus-specific interleukin-2-producing CD4+ T cells and Th1 dominance during lymphocytic choriomeningitis virus infection. Journal of Virology74:4429–4432
    [Google Scholar]
  44. Veiga-Fernandes H., Walter U., Bourgeois C., McLean A., Rocha B.. 2000; Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nature Immunology1:47–53
    [Google Scholar]
  45. von Herrath M. G., Yokoyama M., Dockter J., Oldstone M. B., Whitton J. L.. 1996; CD4-deficient mice have reduced levels of memory cytotoxic T lymphocytes after immunization and show diminished resistance to subsequent virus challenge. Journal of Virology70:1072–1079
    [Google Scholar]
  46. Wasik T. J., Wierzbicki A., Whiteman V. E., Trinchieri G., Lischner H. W., Kozbor D.. 2000; Association between HIV-specific T helper responses and CTL activities in pediatric AIDS. European Journal of Immunology30:117–127
    [Google Scholar]
  47. Wu Y., Liu Y.. 1994; Viral induction of co-stimulatory activity on antigen-presenting cells bypasses the need for CD4+ T-cell help in CD8+ T-cell responses. Current Biology4:499–505
    [Google Scholar]
  48. Zajac A. J., Blattman J. N., Murali-Krishna K., Sourdive D. J., Suresh M., Altman J. D., Ahmed R.. 1998; Viral immune evasion due to persistence of activated T cells without effector function. Journal of Experimental Medicine188:2205–2213
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-9-2123
Loading
/content/journal/jgv/10.1099/0022-1317-83-9-2123
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error