1887

Abstract

Eukaryotic initiation factor eIF(iso)4E binds to the cap structure of mRNAs leading to assembly of the translation complex. This factor also interacts with the potyvirus VPg and this interaction has been correlated with virus infectivity. In this study, we show an interaction between eIF(iso)4E and the proteinase (Pro) of a nepovirus (; ToRSV) . The ToRSV VPg did not interact with eIF(iso)4E although its presence on the VPg-Pro precursor increased the binding affinity of Pro for the initiation factor. A major determinant of the interaction was mapped to the first 93 residues of Pro. Formation of the complex was inhibited by addition of mGTP (a cap analogue), suggesting that Pro-containing molecules compete with cellular mRNAs for eIF(iso)4E binding. The possible implications of this interaction for translation and/or replication of the virus genome are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-8-2085
2002-08-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/8/0832085a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-8-2085&mimeType=html&fmt=ahah

References

  1. Ali I. K., McKendrick L., Morley S. J., Jackson R. J. 2001; Activity of the hepatitis A virus IRES requires association between the cap-binding translation initiation factor (eIF4E) and eIF4G. Journal of Virology 75:7854–7863
    [Google Scholar]
  2. Blair W. S., Parsley T. B., Bogerd H. P., Towner J. S., Semler B. L., Cullen B. R. 1998; Utilization of a mammalian cell-based RNA binding assay to characterize the RNA binding properties of picornavirus 3C proteinases. RNA 4:215–225
    [Google Scholar]
  3. Borman A. M., Michel Y. M., Kean K. M. 2001; Detailed analysis of the requirements of hepatitis A virus internal ribosome entry segment for the eukaryotic initiation factor complex eIF4F. Journal of Virology 75:7864–7871
    [Google Scholar]
  4. Chisholm J., Wieczorek A., Sanfaçon H. 2001; Expression and partial purification of recombinant tomato ringspot nepovirus 3C-like proteinase: comparison of the activity of the mature proteinase and the VPg-proteinase precursor. Virus Research 79:153–164
    [Google Scholar]
  5. Daros J. A., Carrington J. C. 1997; RNA binding activity of NIa proteinase of tobacco etch potyvirus. Virology 237:327–336
    [Google Scholar]
  6. Gale M. Jr, Tan S. L., Katze M. G. 2000; Translational control of viral gene expression in eukaryotes. Microbiology and Molecular Biology Reviews 64:239–280
    [Google Scholar]
  7. Gallie D. R. 2001; Cap-independent translation conferred by the 5′ leader of tobacco etch virus is eukaryotic initiation factor 4G dependent. Journal of Virology 75:12141–12152
    [Google Scholar]
  8. Gamarnik A. V., Andino R. 2000; Interactions of viral protein 3CD and poly(rC) binding protein with the 5′ untranslated region of the poliovirus genome. Journal of Virology 74:2219–2226
    [Google Scholar]
  9. Hans F., Sanfaçon H. 1995; Tomato ringspot nepovirus protease: characterization and cleavage site specificity. Journal of General Virology 76:917–927
    [Google Scholar]
  10. Harris K. S., Xiang W., Alexander L., Lane W. S., Paul A. V., Wimmer E. 1994; Interaction of poliovirus polypeptide 3CDpro with the 5′ and 3′ termini of the poliovirus genome. Identification of viral and cellular cofactors needed for efficient binding. Journal of Biological Chemistry 269:27004–27014
    [Google Scholar]
  11. Herold J., Andino R. 2001; Poliovirus RNA replication requires genome circularization through a protein-protein bridge. Molecular Cell 7:581–591
    [Google Scholar]
  12. Kao C. C., Quadt R., Hershberger R. P., Ahlquist P. 1992; Brome mosaic virus RNA replication proteins 1a and 2a from a complex in vitro. Journal of Virology 66:6322–6329
    [Google Scholar]
  13. Kusov Y. Y., Gauss-Muller V. 1997; In vitro RNA binding of the hepatitis A virus proteinase 3C (HAV 3Cpro) to secondary structure elements within the 5′ terminus of the HAV genome. RNA 3:291–302
    [Google Scholar]
  14. Kusov Y. Y., Morace G., Probst C., Gauss-Muller V. 1997; Interaction of hepatitis A virus (HAV) precursor proteins 3AB and 3ABC with the 5′ and 3′ termini of the HAV RNA. Virus Research 51:151–157
    [Google Scholar]
  15. Léonard S., Plante D., Wittmann S., Daigneault N., Fortin M. G., Laliberté J. F. 2000; Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. Journal of Virology 74:7730–7737
    [Google Scholar]
  16. Lopez de Quinto S., Lafuente E., Martinez-Salas E. 2001; IRES interaction with translation initiation factors: functional characterization of novel RNA contacts with eIF3, eIF4B, and eIF4GII. RNA 7:1213–1226
    [Google Scholar]
  17. Martínez-Salas E., Ramos R., Lafuente E., López de Quinto S. 2001; Functional interactions in internal translation initiation directed by viral and cellular IRES elements. Journal of General Virology 82:973–984
    [Google Scholar]
  18. Mayo M. A., Fritsch C. 1994; A possible consensus sequence for VPg of viruses in the family Comoviridae. FEBS Letters 354:129–130
    [Google Scholar]
  19. Michel Y. M., Borman A. M., Paulous S., Kean K. M. 2001; Eukaryotic initiation factor 4G-poly(A) binding protein interaction is required for poly(A) tail-mediated stimulation of picornavirus internal ribosome entry segment-driven translation but not for X-mediated stimulation of hepatitis C virus translation. Molecular and Cellular Biology 21:4097–4109
    [Google Scholar]
  20. Neeleman L., Olsthoorn R. C., Linthorst H. J., Bol J. F. 2001; Translation of a nonpolyadenylated viral RNA is enhanced by binding of viral coat protein or polyadenylation of the RNA. Proceedings of the National Academy of Sciences, USA 98:14286–14291
    [Google Scholar]
  21. Piron M., Vende P., Cohen J., Poncet D. 1998; Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO Journal 17:5811–5821
    [Google Scholar]
  22. Piron M., Delaunay T., Grosclaude J., Poncet D. 1999; Identification of the RNA-binding, dimerization, and eIF4GI-binding domains of rotavirus nonstructural protein NSP3. Journal of Virology 73:5411–5421
    [Google Scholar]
  23. Riechmann J. L., Lain S., Garcia J. A. 1992; Highlights and prospects of potyvirus molecular biology. Journal of General Virology 73:1–16
    [Google Scholar]
  24. Rodriguez C. M., Freire M. A., Camilleri C., Robaglia C. 1998; The Arabidopsis thaliana cDNAs coding for eIF4E and eIF(iso)4E are not functionally equivalent for yeast complementation and are differentially expressed during plant development. Plant Journal 13:465–473
    [Google Scholar]
  25. Rott M. E., Gilchrist A., Lee L., Rochon D. 1995; Nucleotide sequence of tomato ringspot virus RNA1. Journal of General Virology 76:465–473
    [Google Scholar]
  26. Sachs A. 2000; Physical and functional interactions between the mRNA cap structure and the poly(A) tail. In Translational Control of Gene Expression pp 447–466 Edited by Sonenberg N., Hershey J. W. B., Mathews M. B. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Schaad M. C., Anderberg R. J., Carrington J. C. 2000; Strain-specific interaction of the tobacco etch virus NIa protein with the translation initiation factor eIF4E in the yeast two-hybrid system. Virology 273:300–306
    [Google Scholar]
  28. Sonenberg N., Gingras A. C. 1998; The mRNA 5′ cap-binding protein eIF4E and control of cell growth. Current Opinion in Cell Biology 10:268–275
    [Google Scholar]
  29. Thompson S. R., Sarnow P. 2000; Regulation of host cell translation by viruses and effects on cell function. Current Opinion in Microbiology 3:366–370
    [Google Scholar]
  30. Vende P., Piron M., Castagne N., Poncet D. 2000; Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3′ end. Journal of Virology 74:7064–7071
    [Google Scholar]
  31. Walker P. A., Leong L. E., Porter A. G. 1995; Sequence and structural determinants of the interaction between the 5′-noncoding region of picornavirus RNA and rhinovirus protease 3C. Journal of Biological Chemistry 270:14510–14516
    [Google Scholar]
  32. Wang A., Sanfaçon H. 2000; Proteolytic processing at a novel cleavage site in the N-terminal region of the tomato ringspot nepovirus RNA-1-encoded polyprotein in vitro. Journal of General Virology 81:2771–2781
    [Google Scholar]
  33. Wang A., Carrier K., Chisholm J., Wieczorek A., Huguenot C., Sanfaçon H. 1999; Proteolytic processing of tomato ringspot nepovirus 3C-like protease precursors: definition of the domains for the VPg, protease and putative RNA-dependent RNA polymerase. Journal of General Virology 80:799–809
    [Google Scholar]
  34. Wittmann S., Chatel H., Fortin M. G., Laliberté J. F. 1997; Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234:84–92
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-8-2085
Loading
/content/journal/jgv/10.1099/0022-1317-83-8-2085
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error