1887

Abstract

The E1 region of adenovirus (Ad) type 5 is capable of transforming cells. According to current concepts, the Ad E1B 55 kDa (E1B 55K) protein enables transformed cells to grow by constantly binding and inactivating the p53 tumour suppressor protein. To test this model, the transcriptional activity of p53 was determined in Ad E1-transformed cells. Surprisingly, it was found that a p53-responsive promoter is highly active in Ad E1-transformed cells and further activated only 3- to 4-fold (compared to 200-fold in cells) by exogenously expressed p53 or p53mt24–28, a p53 mutant that is transcriptionally active but unable to bind the E1B 55K. On the other hand, the transient overexpression of E1B 55K led to a strong downregulation of a p53-responsive promoter relative to its baseline activity in Ad E1-transformed cells but not in cells. COS-7 cells, transformed by simian virus 40 (SV40), also showed constitutive p53 activity, whereas HeLa cells, transformed with oncogenic human papillomavirus, did not. Upon stable transfection, Ad E1-transformed cells but not cells gave rise to colonies that expressed exogenous p53 or p53mt24–28 but, nonetheless, grew at near-wild-type rates. It is proposed that E1B 55K or the SV40 tumour antigen are saturated by the p53 protein, which accumulates in virus-transformed cells, leaving a proportion of active p53 molecules. The transformation of cells by the Ad E1 genes confers permissiveness for active p53, conceivably by inactivating the relevant products of p53 target genes that would otherwise prevent cell growth. Thus, Ad-transformed cells contain and tolerate active p53.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-8-2047
2002-08-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/8/0832047a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-8-2047&mimeType=html&fmt=ahah

References

  1. Ali, S. H. & DeCaprio, J. A. ( 2001; ). Cellular transformation by SV40 large T antigen: interaction with host proteins. Seminars in Cancer Biology 11, 15-23.[CrossRef]
    [Google Scholar]
  2. Barak, Y., Gottlieb, E., Juven-Gershon, T. & Oren, M. ( 1994; ). Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes & Development 8, 1739-1749.[CrossRef]
    [Google Scholar]
  3. Bartek, J. & Lukas, J. ( 2001; ). Pathways governing G1/S transition and their response to DNA damage. FEBS Letters 490, 117-122.[CrossRef]
    [Google Scholar]
  4. Blair Zajdel, M. E. & Blair, G. E. ( 1988; ). The intracellular distribution of the transformation-associated protein p53 in adenovirus-transformed rodent cells. Oncogene 2, 579-584.
    [Google Scholar]
  5. Boshart, M., Weber, F., Jahn, G., Dorsch-Hasler, K., Fleckenstein, B. & Schaffner, W. ( 1985; ). A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41, 521-530.[CrossRef]
    [Google Scholar]
  6. Chen, J., Lin, J. & Levine, A. J. ( 1995; ). Regulation of transcription functions of the p53 tumor suppressor by the mdm-2 oncogene. Molecular Medicine 1, 142-152.
    [Google Scholar]
  7. Chen, G., Branton, P. E., Yang, E., Korsmeyer, S. J. & Shore, G. C. ( 1996; ). Adenovirus E1B 19-kDa death suppressor protein interacts with Bax but not with Bad. Journal of Biological Chemistry 271, 24221-24225.[CrossRef]
    [Google Scholar]
  8. Dobbelstein, M., Arthur, A. K., Dehde, S., van Zee, K., Dickmanns, A. & Fanning, E. ( 1992; ). Intracistronic complementation reveals a new function of SV40 T antigen that co-operates with Rb and p53 binding to stimulate DNA synthesis in quiescent cells. Oncogene 7, 837-847.
    [Google Scholar]
  9. Dobbelstein, M., Roth, J., Kimberly, W. T., Levine, A. J. & Shenk, T. ( 1997; ). Nuclear export of the E1B 55-kDa and E4 34-kDa adenoviral oncoproteins mediated by a rev-like signal sequence. EMBO Journal 16, 4276-4284.[CrossRef]
    [Google Scholar]
  10. el-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W. & Vogelstein, B. ( 1993; ). WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817-825.[CrossRef]
    [Google Scholar]
  11. Elenbaas, B., Spirio, L., Koerner, F., Fleming, M. D., Zimonjic, D. B., Donaher, J. L., Popescu, N. C., Hahn, W. C. & Weinberg, R. A. ( 2001; ). Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes & Development 15, 50-65.[CrossRef]
    [Google Scholar]
  12. Fallaux, F. J., Kranenburg, O., Cramer, S. J., Houweling, A., Van Ormondt, H., Hoeben, R. C. & Van Der Eb, A. J. ( 1996; ). Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. Human Gene Therapy 7, 215-222.[CrossRef]
    [Google Scholar]
  13. Freedman, D. A., Epstein, C. B., Roth, J. C. & Levine, A. J. ( 1997; ). A genetic approach to mapping the p53 binding site in the MDM2 protein. Molecular Medicine 3, 248-259.
    [Google Scholar]
  14. Gorman, C. M., Merlino, G. T., Willingham, M. C., Pastan, I. & Howard, B. H. ( 1982; ). The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proceedings of the National Academy of Sciences, USA 79, 6777-6781.[CrossRef]
    [Google Scholar]
  15. Graham, F. L., Smiley, J., Russell, W. C. & Nairn, R. ( 1977; ). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. Journal of General Virology 36, 59-74.[CrossRef]
    [Google Scholar]
  16. Grand, R. J., Lecane, P. S., Owen, D., Grant, M. L., Roberts, S., Levine, A. J. & Gallimore, P. H. ( 1995; ). The high levels of p53 present in adenovirus early region 1-transformed human cells do not cause up-regulation of MDM2 expression. Virology 210, 323-334.[CrossRef]
    [Google Scholar]
  17. Hahn, W. C., Counter, C. M., Lundberg, A. S., Beijersbergen, R. L., Brooks, M. W. & Weinberg, R. A. ( 1999; ). Creation of human tumour cells with defined genetic elements. Nature 400, 464-468.[CrossRef]
    [Google Scholar]
  18. Han, J., Sabbatini, P., Perez, D., Rao, L., Modha, D. & White, E. ( 1996; ). The E1B 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein. Genes & Development 10, 461-477.[CrossRef]
    [Google Scholar]
  19. Hashimoto, S., Ishii, A. & Yonehara, S. ( 1991; ). The E1B oncogene of adenovirus confers cellular resistance to cytotoxicity of tumor necrosis factor and monoclonal anti-Fas antibody. International Immunology 3, 343-351.[CrossRef]
    [Google Scholar]
  20. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. ( 1997; ). Mdm2 promotes the rapid degradation of p53. Nature 387, 296-299.[CrossRef]
    [Google Scholar]
  21. Hermeking, H., Lengauer, C., Polyak, K., He, T. C., Zhang, L., Thiagalingam, S., Kinzler, K. W. & Vogelstein, B. ( 1997; ). 14-3-3σ is a p53-regulated inhibitor of G2/M progression. Molecular Cell 1, 3-11.[CrossRef]
    [Google Scholar]
  22. Higashino, F., Pipas, J. M. & Shenk, T. ( 1998; ). Adenovirus e4orf6 oncoprotein modulates the function of the p53-related protein, p73. Proceedings of the National Academy of Sciences, USA 95, 15683-15687.[CrossRef]
    [Google Scholar]
  23. Huibregtse, J. M., Scheffner, M. & Howley, P. M. ( 1991; ). A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO Journal 10, 4129-4135.
    [Google Scholar]
  24. Hutton, F. G., Turnell, A. S., Gallimore, P. H. & Grand, R. J. ( 2000; ). Consequences of disruption of the interaction between p53 and the larger adenovirus early region 1B protein in adenovirus E1 transformed human cells. Oncogene 19, 452-462.[CrossRef]
    [Google Scholar]
  25. Jiang, D., Srinivasan, A., Lozano, G. & Robbins, P. D. ( 1993; ). SV40 T antigen abrogates p53-mediated transcriptional activity. Oncogene 8, 2805-2812.
    [Google Scholar]
  26. Jost, C. A., Marin, M. C. & Kaelin, W. G.Jr ( 1997; ). p73 is a human p53-related protein that can induce apoptosis. Nature 389, 191-194.[CrossRef]
    [Google Scholar]
  27. Juven, T., Barak, Y., Zauberman, A., George, D. L. & Oren, M. ( 1993; ). Wild-type p53 can mediate sequence-specific transactivation of an internal promoter within the mdm2 gene. Oncogene 8, 3411-3416.
    [Google Scholar]
  28. Kaghad, M., Bonnet, H., Yang, A., Creancier, L., Biscan, J. C., Valent, A., Minty, A., Chalon, P., Lelias, J. M., Dumont, X., Ferrara, P., McKeon, F. & Caput, D. ( 1997; ). Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90, 809-819.[CrossRef]
    [Google Scholar]
  29. Kannan, K., Kaminski, N., Rechavi, G., Jakob-Hirsch, J., Amariglio, N. & Givol, D. ( 2001; ). DNA microarray analysis of genes involved in p53-mediated apoptosis: activation of Apaf-1. Oncogene 20, 3449-3455.[CrossRef]
    [Google Scholar]
  30. Kao, C. C., Yew, P. R. & Berk, A. J. ( 1990; ). Domains required for in vitro association between the cellular p53 and the adenovirus 2 E1B 55K proteins. Virology 179, 806-814.[CrossRef]
    [Google Scholar]
  31. Koch, P., Gatfield, J., Löber, C., Hobom, U., Lenz-Stöppler, C., Roth, J. & Dobbelstein, M. ( 2001; ). Efficient replication of adenovirus despite the overexpression of active and non-degradable p53. Cancer Research 61, 5941-5947.
    [Google Scholar]
  32. Kubbutat, M. H., Jones, S. N. & Vousden, K. H. ( 1997; ). Regulation of p53 stability by Mdm2. Nature 387, 299-303.[CrossRef]
    [Google Scholar]
  33. Lane, D. P. ( 1992; ). p53, guardian of the genome. Nature 358, 15-16.[CrossRef]
    [Google Scholar]
  34. Levine, A. J. ( 1997; ). p53, the cellular gatekeeper for growth and division. Cell 88, 323-331.[CrossRef]
    [Google Scholar]
  35. Lin, J., Chen, J., Elenbaas, B. & Levine, A. J. ( 1994; ). Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes & Development 8, 1235-1246.[CrossRef]
    [Google Scholar]
  36. McCormick, F., Clark, R., Harlow, E. & Tjian, R. ( 1981; ). SV40 T antigen binds specifically to a cellular 53 K protein in vitro. Nature 292, 63-65.[CrossRef]
    [Google Scholar]
  37. Marin, M. C., Jost, C. A., Irwin, M. S., DeCaprio, J. A., Caput, D. & Kaelin, W. G.Jr ( 1998; ). Viral oncoproteins discriminate between p53 and the p53 homolog p73. Molecular and Cellular Biology 18, 6316-6324.
    [Google Scholar]
  38. Miyashita, T. & Reed, J. C. ( 1995; ). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293-299.[CrossRef]
    [Google Scholar]
  39. Moroni, M. C., Hickman, E. S., Denchi, E. L., Caprara, G., Colli, E., Cecconi, F., Muller, H. & Helin, K. ( 2001; ). Apaf-1 is a transcriptional target for E2F and p53. Nature Cell Biology 3, 552-558.[CrossRef]
    [Google Scholar]
  40. Muller, M., Wilder, S., Bannasch, D., Israeli, D., Lehlbach, K., Li-Weber, M., Friedman, S. L., Galle, P. R., Stremmel, W., Oren, M. & Krammer, P. H. ( 1998; ). p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. Journal of Experimental Medicine 188, 2033-2045.[CrossRef]
    [Google Scholar]
  41. Nakano, K. & Vousden, K. H. ( 2001; ). PUMA, a novel proapoptotic gene, is induced by p53. Molecular Cell 7, 683-694.[CrossRef]
    [Google Scholar]
  42. Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T. & Tanaka, N. ( 2000a; ). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053-1058.[CrossRef]
    [Google Scholar]
  43. Oda, K., Arakawa, H., Tanaka, T., Matsuda, K., Tanikawa, C., Mori, T., Nishimori, H., Tamai, K., Tokino, T., Nakamura, Y. & Taya, Y. ( 2000b; ). p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849-862.[CrossRef]
    [Google Scholar]
  44. Ohki, R., Nemoto, J., Murasawa, H., Oda, E., Inazawa, J., Tanaka, N. & Taniguchi, T. ( 2000; ). Reprimo, a new candidate mediator of the p53-mediated cell cycle arrest at the G2 phase. Journal of Biological Chemistry 275, 22627-22630.[CrossRef]
    [Google Scholar]
  45. Oliner, J. D., Pietenpol, J. A., Thiagalingam, S., Gyuris, J., Kinzler, K. W. & Vogelstein, B. ( 1993; ). Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362, 857-860.[CrossRef]
    [Google Scholar]
  46. Perez, D. & White, E. ( 1998; ). E1B 19K inhibits Fas-mediated apoptosis through FADD-dependent sequestration of FLICE. Journal of Cell Biology 141, 1255-1266.[CrossRef]
    [Google Scholar]
  47. Pipas, J. M. & Levine, A. J. ( 2001; ). Role of T antigen interactions with p53 in tumorigenesis. Seminars in Cancer Biology 11, 23-30.[CrossRef]
    [Google Scholar]
  48. Rees, S., Coote, J., Stables, J., Goodson, S., Harris, S. & Lee, M. G. ( 1996; ). Bicistronic vector for the creation of stable mammalian cell lines that predisposes all antibiotic-resistant cells to express recombinant protein. Biotechniques 20, 102–104; 106, 108–110.
    [Google Scholar]
  49. Reich, N. C., Oren, M. & Levine, A. J. ( 1983; ). Two distinct mechanisms regulate the levels of a cellular tumor antigen, p53. Molecular and Cellular Biology 3, 2143-2150.
    [Google Scholar]
  50. Ristea, S., Dobbelstein, M. & Roth, J. ( 2000; ). Rev protein of human immunodeficiency virus type 1 and cellular exportin 1 protein relocalize each other to a subnucleolar structure. AIDS Research and Human Retroviruses 16, 857-865.[CrossRef]
    [Google Scholar]
  51. Roth, J. & Dobbelstein, M. ( 1997; ). Export of hepatitis B virus RNA on a Rev-like pathway: inhibition by the regenerating liver inhibitory factor IκBα. Journal of Virology 71, 8933-8939.
    [Google Scholar]
  52. Roth, J., König, C., Wienzek, S., Weigel, S., Ristea, S. & Dobbelstein, M. ( 1998; ). Inactivation of p53 but not p73 by adenovirus type 5 E1B 55-kilodalton and E4 34-kilodalton oncoproteins. Journal of Virology 72, 8510-8516.
    [Google Scholar]
  53. Rubenwolf, S., Schutt, H., Nevels, M., Wolf, H. & Dobner, T. ( 1997; ). Structural analysis of the adenovirus type 5 E1B 55-kilodalton-E4orf6 protein complex. Journal of Virology 71, 1115-1123.
    [Google Scholar]
  54. Sachsenmeier, K. F. & Pipas, J. M. ( 2001; ). Inhibition of Rb and p53 is insufficient for SV40 T-antigen transformation. Virology 283, 40-48.[CrossRef]
    [Google Scholar]
  55. Sarnow, P., Ho, Y. S., Williams, J. & Levine, A. J. ( 1982a; ). Adenovirus E1B-58kD tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kD cellular protein in transformed cells. Cell 28, 387-394.[CrossRef]
    [Google Scholar]
  56. Sarnow, P., Sullivan, C. A. & Levine, A. J. ( 1982b; ). A monoclonal antibody detecting the adenovirus type 5-E1B-58kD tumor antigen: characterization of the E1B-58kD tumor antigen in adenovirus-infected and -transformed cells. Virology 120, 510-517.[CrossRef]
    [Google Scholar]
  57. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. ( 1990; ). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129-1136.[CrossRef]
    [Google Scholar]
  58. Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. ( 1993; ). The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495-505.[CrossRef]
    [Google Scholar]
  59. Schwartz, D. & Rotter, V. ( 1998; ). p53-dependent cell cycle control: response to genotoxic stress. Seminars in Cancer Biology 8, 325-336.[CrossRef]
    [Google Scholar]
  60. Shen, Y. & Shenk, T. ( 1994; ). Relief of p53-mediated transcriptional repression by the adenovirus E1B 19-kDa protein or the cellular Bcl-2 protein. Proceedings of the National Academy of Sciences, USA 91, 8940-8944.[CrossRef]
    [Google Scholar]
  61. Shen, Y., Kitzes, G., Nye, J. A., Fattaey, A. & Hermiston, T. ( 2001; ). Analyses of single-amino-acid substitution mutants of adenovirus type 5 E1B-55K protein. Journal of Virology 75, 4297-4307.[CrossRef]
    [Google Scholar]
  62. Shenk, T. ( 1996; ). Adenoviridae: The viruses and their replication. In Virology , pp. 2111-2148. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia:Lippincott–Raven.
  63. Steegenga, W. T., Shvarts, A., Riteco, N., Bos, J. L. & Jochemsen, A. G. ( 1999; ). Distinct regulation of p53 and p73 activity by adenovirus E1A, E1B, and E4orf6 proteins. Molecular and Cellular Biology 19, 3885-3894.
    [Google Scholar]
  64. Vogelstein, B., Lane, D. & Levine, A. J. ( 2000; ). Surfing the p53 network. Nature 408, 307-310.[CrossRef]
    [Google Scholar]
  65. Vousden, K. H. ( 2000; ). p53. Death star. Cell 103, 691-694.[CrossRef]
    [Google Scholar]
  66. Weitzman, J. B. & Yaniv, M. ( 1999; ). Rebuilding the road to cancer. Nature 400, 401-402.[CrossRef]
    [Google Scholar]
  67. Whyte, P., Buchkovich, K. J., Horowitz, J. M., Friend, S. H., Raybuck, M., Weinberg, R. A. & Harlow, E. ( 1988; ). Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334, 124-129.[CrossRef]
    [Google Scholar]
  68. Wienzek, S., Roth, J. & Dobbelstein, M. ( 2000; ). E1B 55-kilodalton oncoproteins of adenovirus types 5 and 12 inactivate and relocalize p53, but not p51 or p73, and cooperate with E4orf6 proteins to destabilize p53. Journal of Virology 74, 193-202.[CrossRef]
    [Google Scholar]
  69. Wu, X., Bayle, J. H., Olson, D. & Levine, A. J. ( 1993; ). The p53-mdm-2 autoregulatory feedback loop. Genes & Development 7, 1126-1132.[CrossRef]
    [Google Scholar]
  70. Wu, G. S., Burns, T. F., McDonald, E. R.III, Jiang, W., Meng, R., Krantz, I. D., Kao, G., Gan, D. D., Zhou, J. Y., Muschel, R., Hamilton, S. R., Spinner, N. B., Markowitz, S., Wu, G. & el-Deiry, W. S. ( 1997; ). KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nature Genetics 17, 141-143.[CrossRef]
    [Google Scholar]
  71. Yew, P. R. & Berk, A. J. ( 1992; ). Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature 357, 82-85.[CrossRef]
    [Google Scholar]
  72. Yew, P. R., Kao, C. C. & Berk, A. J. ( 1990; ). Dissection of functional domains in the adenovirus 2 early 1B 55K polypeptide by suppressor-linker insertional mutagenesis. Virology 179, 795-805.[CrossRef]
    [Google Scholar]
  73. Yew, P. R., Liu, X. & Berk, A. J. ( 1994; ). Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Genes & Development 8, 190-202.[CrossRef]
    [Google Scholar]
  74. Zantema, A., Fransen, J. A., Davis-Olivier, A., Ramaekers, F. C., Vooijs, G. P., DeLeys, B. & Van der Eb, A. J. ( 1985a; ). Localization of the E1B proteins of adenovirus 5 in transformed cells, as revealed by interaction with monoclonal antibodies. Virology 142, 44-58.[CrossRef]
    [Google Scholar]
  75. Zantema, A., Schrier, P. I., Davis-Olivier, A., van Laar, T., Vaessen, R. T. & van der Eb, A. ( 1985b; ). Adenovirus serotype determines association and localization of the large E1B tumor antigen with cellular tumor antigen p53 in transformed cells. Molecular and Cellular Biology 5, 3084-3091.
    [Google Scholar]
  76. Zhu, J. & Chen, X. ( 2000; ). MCG10, a novel p53 target gene that encodes a KH domain RNA-binding protein, is capable of inducing apoptosis and cell cycle arrest in G2–M. Molecular and Cellular Biology 20, 5602-5618.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-8-2047
Loading
/content/journal/jgv/10.1099/0022-1317-83-8-2047
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error