1887

Abstract

We have established a convenient animal model for flavivirus encephalitis using Montana leukoencephalitis virus (MMLV), a bat flavivirus. This virus has the same genomic organization, and contains the same conserved motifs in genes that encode potential antiviral targets, as flaviviruses that cause disease in man (N. Charlier ., accompanying paper), and has a similar particle size (approximately 40 nm). MMLV replicates well in Vero cells and appears to be equally as sensitive as yellow fever virus and dengue fever virus to a selection of experimental antiviral agents. Cells infected with MMLV show dilation of the endoplasmic reticulum, a characteristic of flavivirus infection. Intraperitoneal, intranasal or direct intracerebral inoculation of SCID mice with MMLV resulted in encephalitis ultimately leading to death, whereas immunocompetent mice were refractory to either intranasal or intraperitoneal infection with MMLV. Viral RNA and/or antigens were detected in the brain and serum of MMLV-infected SCID mice, but not in any other organ examined: MMLV was detected in the olfactory lobes, the cerebral cortex, the limbic structures, the midbrain, cerebellum and medulla oblongata. Infection was confined to neurons. Treatment with the interferon-α/β inducer poly(I)·poly(C) protected SCID mice against MMLV-induced morbidity and mortality, and this protection correlated with a reduction in infectious virus titre and viral RNA load. This validates the MMLV model for use in antiviral drug studies. The MMLV SCID model may, therefore, be attractive for the study of chemoprophylactic or chemotherapeutic strategies against flavivirus infections causing encephalitis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-8-1887
2002-08-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/8/0831887a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-8-1887&mimeType=html&fmt=ahah

References

  1. Asnis, D. S., Conetta, R., Teixeira, A. A., Waldman, G. & Sampson, B. A. ( 2000; ). The West Nile Virus outbreak of 1999 in New York: the Flushing Hospital experience. Clinical Infectious Diseases 30, 413-418.[CrossRef]
    [Google Scholar]
  2. Bell, J. F. & Thomas, L. A. ( 1964; ). A new virus, ‘‘MML’’, enzootic in bats (Myotis lucifungus) of Montana. American Journal of Tropical Medicine and Hygiene 607–612.
    [Google Scholar]
  3. Breitschopf, H., Suchanek, G., Gould, R. M., Coldman, D. R. & Lassmann, H. ( 1992; ). In situ hybridization with digoxigenin-labeled probes: sensitive and reliable detection method applied to myelinating rat brain. Acta Neuropathologica (Berlin) 84, 581-587.
    [Google Scholar]
  4. Briese, T., Jia, X.-Y., Huang, C., Grady, L. J. & Lipkin, W. I. ( 1999; ). Identification of a Kunjin/West Nile-like flavivirus in brains of patients with New York encephalitis. Lancet 354, 1261-1262.[CrossRef]
    [Google Scholar]
  5. Cecilia, D. & Gould, E. A. ( 1991; ). Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization-resistant mutants. Virology 181, 70-77.[CrossRef]
    [Google Scholar]
  6. Chambers, T. J. & Nickells, M. ( 2001; ). Neuroadapted Yellow fever virus 17D: genetic and biological characterization of a highly mouse-neurovirulent virus and its infectious molecular clone. Journal of Virology 75, 10912-10922.[CrossRef]
    [Google Scholar]
  7. Chambers, T. J., Hahn, C. S., Galler, R. & Rice, C. M. ( 1990; ). Flavivirus genome organization, expression, and replication. Annual Review of Microbiology 44, 649-688.[CrossRef]
    [Google Scholar]
  8. Chambers, T. J., Halevy, M., Nestorowicz, A., Rice, C. M. & Lustig, S. ( 1998; ). West Nile virus envelope proteins: nucleotide sequence analysis of strains differing in mouse neuroinvasiveness. Journal of General Virology 79, 2375-2380.
    [Google Scholar]
  9. Charlier, N., Leyssen, P., Pleij, C. W. A., Lemey, P., Billoir, F., Van Laethem, K., Vandamme, A.-M., De Clerq, E., de Lamballerie, X. & Neyts, J. ( 2002; ). Complete genome sequence of Montana Myotis leukoencephalitis virus, phylogenetic analysis and comparative study of the 3′ untranslated region of flaviviruses with no known vector. Journal of General Virology 83, 1875-1885.
    [Google Scholar]
  10. Chiba, N., Iwasaki, T., Mizutani, T., Kariwa, H., Kurata, T. & Takashima, L. ( 1999; ). Pathogenicity of tick-borne encephalitis virus isolated in Hokkaido, Japan in mouse model. Vaccine 17, 779-787.[CrossRef]
    [Google Scholar]
  11. De Clercq, E., Cools, M., Balzarini, J., Snoeck, R., Andrei, G., Hosoya, M., Shigeta, S., Ueda, T., Minakawa, N. & Matsuda, A. ( 1991; ). Antiviral activities of 5-ethynyl-1-beta-D-ribofuranosylimidazole-4-carboxamide and related compounds. Antimicrobial Agents and Chemotherapy 35, 679-684.[CrossRef]
    [Google Scholar]
  12. De Silva, D., Reiser, A., Hermann, M., Tabiti, K. & Wittwer, C. ( 1998; ). Rapid genotyping and quantification on the LightCycler with hybridization probes. Biochemica 2, 12-15.
    [Google Scholar]
  13. Eldadah, A. H. & Nathanson, N. ( 1967; ). Pathogenesis of West Nile Virus encephalitis in mice and rats. II. Virus multiplication, evolution of immunofluorescence, and development of histological lesions in the brain. American Journal of Epidemiology 86, 776-790.
    [Google Scholar]
  14. Halevy, M., Akov, Y., Ben-Nathan, D., Kobiler, D., Lachmi, B. & Lustig, S. ( 1994; ). Loss of active neuroinvasiveness in attenuated strains of West Nile virus: pathogenicity in immunocompetent and SCID mice. Archives of Virology 137, 355-370.[CrossRef]
    [Google Scholar]
  15. Han, L. L., Popovici, F., Alexander, J. J., Laurentia, V., Tengelsen, L. A., Cernescu, C., Gary, J. H., Ion, N. N., Campbell, G. L. & Tsai, T. F. ( 1999; ). Risk factors for West Nile virus infection and meningoencephalitis, Romania, 1996. Journal of Infectious Diseases 179, 230-233.[CrossRef]
    [Google Scholar]
  16. Harrington, D. G., Hilmas, D. E., Elwell, M. R., Whitmire, R. E. & Stephen, E. I. ( 1977; ). Intranasal infection of monkeys with Japanese encephalitis virus: clinical response and treatment with a nuclease-resistant derivative of poly (I).poly (C). American Journal of Tropical Medicine and Hygiene 26, 1191-1198.
    [Google Scholar]
  17. Hase, T. ( 1993; ). Virus–neuron interactions in the mouse brain infected with Japanese encephalitis virus. Virchows Archiv B Cell Pathology Including Molecular Pathology 64, 161-170.[CrossRef]
    [Google Scholar]
  18. Hase, T., Dubois, D. R. & Summers, P. L. ( 1990; ). Comparative study of mouse brains infected with Japanese encephalitis virus by intracerebral or intraperitoneal inoculation. International Journal of Experimental Pathology 71, 857-869.
    [Google Scholar]
  19. Hase, T., Dubois, D. R., Summers, P. L., Downs, M. B. & Ussery, M. A. ( 1993; ). Comparison of replication rates and pathogenicities between the SA14 parent and SA14-14-2 vaccine strains of Japanese encephalitis virus in mouse brain neurons. Archives of Virology 130, 131-143.[CrossRef]
    [Google Scholar]
  20. Hasegawa, H., Yoshida, M., Shiosaka, T., Fujita, S. & Kobayashi, Y. ( 1992; ). Mutations in the envelope protein of Japanese encephalitis virus affect entry into cultured cells and virulence in mice. Virology 191, 158-165.[CrossRef]
    [Google Scholar]
  21. Heinz, F. X. & Mandl, C. W. ( 1993; ). The molecular biology of tick-borne encephalitis virus. Acta Pathologica, Microbiologica et Immunologica Scandinavica 101, 735-745.[CrossRef]
    [Google Scholar]
  22. Holland, P. M., Abramson, R. D., Watson, R. & Gelfand, D. H. ( 1991; ). Detection of specific polymerase chain reaction product by utilizing the 5’→3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proceedings of the National Academy of Sciences, USA 88, 7276-7280.[CrossRef]
    [Google Scholar]
  23. Holzmann, H., Heinz, F. X., Mandl, C. W., Guirakhoo, F. & Kunz, C. ( 1990; ). A single amino acid substitution in envelope protein E of tick-borne encephalitis virus leads to attenuation in the mouse model. Journal of Virology 64, 5156-5159.
    [Google Scholar]
  24. Hurrelbrink, R. J., Nestorowicz, A. & McMinn, P. C. ( 1999; ). Characterization of infectious Murray Valley encephalitis virus derived from a stably cloned genome-length cDNA. Journal of General Virology 80, 3115-3125.
    [Google Scholar]
  25. Jiang, W. R., Lowe, A., Higgs, S., Reid, H. & Gould, E. A. ( 1993; ). Single amino acid codon changes detected in louping ill virus antibody-resistant mutants with reduced neurovirulence. Journal of General Virology 74, 931-935.[CrossRef]
    [Google Scholar]
  26. Johnson, H. N. ( 1967; ). Ecological implications of antigenically related mammalian viruses for which arthropod vectors are unknown and avian associated soft tick viruses. Japanese Journal of Medical Science and Biology 20, 160-166.
    [Google Scholar]
  27. Johnson, R. T., Burke, D. S., Elwell, M., Leake, C. J., Nisalak, A., Hoke, C. H. & Lorsomrudee, W. ( 1985; ). Japanese encephalitis: immunocytochemical studies of viral antigen and inflammatory cells in fatal cases. Annals of Neurology 18, 567-573.[CrossRef]
    [Google Scholar]
  28. Kuno, G., Chang, G. J., Tsuchiya, K. R., Karabatsos, N. & Cropp, C. B. ( 1998; ). Phylogeny of the genus Flavivirus. Journal of Virology 72, 73-83.
    [Google Scholar]
  29. Leyssen, P., De Clercq, E. & Neyts, J. ( 2000; ). Perspectives for the treatment of infections with Flaviviridae. Clinical Microbiology Reviews 13, 67-82.[CrossRef]
    [Google Scholar]
  30. Leyssen, P., Van Lommel, A., Drosten, C., Schmitz, H., De Clercq, E. & Neyts, J. ( 2001; ). A novel model for the study of the therapy of flavivirus infections using the Modoc virus. Virology 279, 27-37.[CrossRef]
    [Google Scholar]
  31. Liu, Y., Blanden, R. V. & Mullbacher, A. ( 1989; ). Identification of cytolytic lymphocytes in West Nile virus-infected murine central nervous system. Journal of General Virology 70, 565-573.[CrossRef]
    [Google Scholar]
  32. Livak, K. J., Flood, S. J., Marmaro, J., Giusti, W. & Deetz, K. ( 1995; ). Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods and Applications 4, 357-362.[CrossRef]
    [Google Scholar]
  33. Lvov, D. K., Butenko, A. M., Gromashevsky, V. L., Larichev, V. P., Gaidamovich, S. Y., Vyshemirsky, O. I., Zhukov, A. N., Lazorenko, V. V., Salko, V. N., Kovtunov, A. I., Galimzyanov, K. M., Platonov, A. E., Morozova, T. N., Khutoretskaya, N. V., Shishkina, E. O. & Skvortsova, T. M. ( 2000; ). Isolation of two strains of West Nile virus during an outbreak in southern Russia, 1999. Emerging Infectious Diseases 6, 373-376.[CrossRef]
    [Google Scholar]
  34. McMinn, P. C., Lee, E., Hartley, S., Roehrig, J. T., Dalgarno, L. & Weir, R. C. ( 1995a; ). Murray Valley encephalitis virus envelope protein antigenic variants with altered hemagglutination properties and reduced neuroinvasiveness in mice. Virology 211, 10-20.[CrossRef]
    [Google Scholar]
  35. McMinn, P. C., Marshall, I. D. & Dalgarno, L. ( 1995b; ). Neurovirulence and neuroinvasiveness of Murray Valley encephalitis virus mutants selected by passage in a monkey kidney cell line. Journal of General Virology 76, 865-872.[CrossRef]
    [Google Scholar]
  36. Malinoski, F. J., Hasty, S. E., Ussery, M. A. & Dalrymple, J. M. ( 1990; ). Prophylactic ribavirin treatment of dengue type 1 infection in rhesus monkeys. Antiviral Research 13, 139-149.[CrossRef]
    [Google Scholar]
  37. Mathur, A., Arora, K. L. & Chaturvedi, U. C. ( 1981; ). Congenital infection of mice with Japanese encephalitis virus. Infection and Immunity 34, 26-29.
    [Google Scholar]
  38. Matthews, V., Robertson, T., Kendrick, T., Abdo, M., Papadimitriou, J. & McMinn, P. ( 2000; ). Morphological features of Murray Valley encephalitis virus infection in the central nervous system of Swiss mice. International Journal of Experimental Pathology 81, 31-40.
    [Google Scholar]
  39. Mazlo, M. & Szanto, J. ( 1978; ). Morphological demonstration of the virus of tick-borne encephalitis in the human brain. Acta Neuropathologica (Berlin) 43, 251-253.
    [Google Scholar]
  40. Monath, T. P. & Heinz, F. X. ( 1996; ). Flaviviruses. In Fields Virology , pp. 961-1034. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia:Lippincott–Raven.
  41. Nash, D., Mostashari, F., Fine, A., Miller, J., O′Leary, D., Murray, K., Huang, A., Rosenberg, A., Greenberg, A., Sherman, M., Wong, S. & Layton, M. ( 2001; ). The outbreak of West Nile virus infection in the New York City area in 1999. New England Journal of Medicine 344, 1807-1814.[CrossRef]
    [Google Scholar]
  42. Nichter, C. A., Pavlakis, S. G., Shaikh, U., Cherian, K. A., Dobrosyzcki, J., Porricolo, M. E. & Chatturvedi, I. ( 2000; ). Rhombencephalitis caused by West Nile fever virus. Neurology 55, 153.[CrossRef]
    [Google Scholar]
  43. Ogata, A., Nagashima, K., Hall, W. W., Ichikawa, M., Kimura-Kuroda, J. & Yasui, K. ( 1991; ). Japanese encephalitis virus neurotropism is dependent on the degree of neuronal maturity. Journal of Virology 65, 880-886.
    [Google Scholar]
  44. Sampson, B. A., Ambrosi, C., Charlot, A., Reiber, K., Verress, J. F. & Armbrustmacher, V. ( 2000; ). The pathology of human West Nile virus infection. Human Pathology 31, 527-531.[CrossRef]
    [Google Scholar]
  45. Schlesinger, J. J., Chapman, S., Nestorowicz, A., Rice, C. M., Ginocchio, T. E. & Chambers, T. J. ( 1996; ). Replication of yellow fever virus in the mouse central nervous system: comparison of neuroadapted and non-neuroadapted virus and partial sequence analysis of the neuroadapted strain. Journal of General Virology 77, 1277-1285.[CrossRef]
    [Google Scholar]
  46. Shieh, W. J., Guarner, J., Layton, M., Fine, A., Miller, J., Nash, D., Campbell, G. I., Roehrig, J. T., Gubler, D. J. & Zaki, S. R. ( 2000; ). The role of pathology in an investigation of an outbreak of West Nile encephalitis in New York, 1999. Emerging Infectious Diseases 6, 370-372.[CrossRef]
    [Google Scholar]
  47. Siegel-Itzkovich, J. ( 2000; ). Twelve die of West Nile virus in Israel. British Medical Journal 321, 724.[CrossRef]
    [Google Scholar]
  48. Singh, B. & Postic, B. ( 1970; ). Enhanced resistance of mice to virulent Japanese B encephalitis virus following inactivated vaccine and poly I:C. Journal of Infectious Diseases 122, 339-342.[CrossRef]
    [Google Scholar]
  49. Sumiyoshi, H., Tignor, G. H. & Shope, R. E. ( 1995; ). Characterization of a highly attenuated Japanese encephalitis virus generated from molecularly cloned cDNA. Journal of Infectious Diseases 171, 1144-1151.[CrossRef]
    [Google Scholar]
  50. Wang, J. J., Liao, C. L., Yang, C. I., Lin, Y. L., Chiou, C. T. & Chen, L. K. ( 1998; ). Localizations of NS3 and E proteins in mouse brain infected with mutant strain of Japanese encephalitis virus. Archives of Virology 143, 2353-2369.[CrossRef]
    [Google Scholar]
  51. Weiner, L. P., Cole, G. A. & Nathanson, N. ( 1970; ). Experimental encephalitis following peripheral inoculation of West Nile virus in mice of different ages. Journal of Hygiene (London) 68, 435-446.[CrossRef]
    [Google Scholar]
  52. Westaway, E. G. ( 1987; ). Flavivirus replication strategy. Advances in Virus Research 33, 45-90.
    [Google Scholar]
  53. Wittwer, C. T., Ririe, K. M., Andrew, R. V., David, D. A., Gundry, R. A. & Balis, U. J. ( 1997; ). The LightCycler: a microvolume multisample fluorimeter with rapid temperature control. Biotechniques 22, 176-181.
    [Google Scholar]
  54. Worthington, M., Levy, H. & Rice, J. ( 1973; ). Late therapy of an arbovirus encephalitis in mice with interferon and interferon stimulators. Proceedings of the Society for Experimental Biology and Medicine 143, 638-643.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-8-1887
Loading
/content/journal/jgv/10.1099/0022-1317-83-8-1887
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error