1887

Abstract

Human immunodeficiency virus (HIV) exploits cell surface receptors to attach to and gain entry into cells. The HIV envelope spike glycoprotein on the surface of virus particles binds both CD4 and a seven-transmembrane coreceptor. These interactions trigger conformational changes in the envelope spike that induce fusion of viral and cellular membranes and entry of the viral core into the cell cytoplasm. Other cell surface receptors also interact with gp120 and aid attachment of virus particles. This review describes these receptors, their roles in HIV entry and their influence on cell tropism.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-8-1809
2002-08-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/8/0831809a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-8-1809&mimeType=html&fmt=ahah

References

  1. Agace, W. W., Amara, A., Roberts, A. I., Pablos, J. L., Thelen, M., Uguccioni, M., Li, X. Y., Marsal, J., Arenzana-Seisdedos, F., Delauney, T., Ebert, E. C., Moser, B. & Parker, C. M. ( 2000; ). Constitutive expression of stromal derived factor-1 by mucosal epithelia and its role in HIV transmission and propagation. Current Biology 10, 325-328.[CrossRef]
    [Google Scholar]
  2. Alkhatib, G., Combadiere, C., Broder, C. C., Feng, Y., Kennedy, P. E., Murphy, P. M. & Berger, E. A. ( 1996; ). CC CKR5: a RANTES, MIP-1α, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272, 1955-1958.[CrossRef]
    [Google Scholar]
  3. Alkhatib, G., Liao, F., Berger, E. A., Farber, J. M. & Peden, K. W. ( 1997; ). A new SIV co-receptor, STRL33. Nature 388, 238.[CrossRef]
    [Google Scholar]
  4. Amiel, C., Darcissac, E., Truong, M. J., Dewulf, J., Loyens, M., Mouton, Y., Capron, A. & Bahr, G. M. ( 1999; ). Interleukin-16 (IL-16) inhibits human immunodeficiency virus replication in cells from infected subjects, and serum IL-16 levels drop with disease progression. Journal of Infectious Diseases 179, 83-91.[CrossRef]
    [Google Scholar]
  5. Aramori, I., Ferguson, S. S., Bieniasz, P. D., Zhang, J., Cullen, B. & Cullen, M. G. ( 1997; ). Molecular mechanism of desensitization of the chemokine receptor CCR-5: receptor signaling and internalization are dissociable from its role as an HIV-1 co-receptor. EMBO Journal 16, 4606-4616.[CrossRef]
    [Google Scholar]
  6. Arthos, J., Rubbert, A., Rabin, R. L., Cicala, C., Machado, E., Wildt, K., Hanbach, M., Steenbeke, T. D., Swofford, R., Farber, J. M. & Fauci, A. S. ( 2000; ). CCR5 signal transduction in macrophages by human immunodeficiency virus and simian immunodeficiency virus envelopes. Journal of Virology 74, 6418-6424.[CrossRef]
    [Google Scholar]
  7. Asjo, B., Morfeldt Manson, L., Albert, J., Biberfeld, G., Karlsson, A., Lidman, K. & Fenyo, E. M. ( 1986; ). Replicative capacity of human immunodeficiency virus from patients with varying severity of HIV infection. Lancet 2, 660-662.
    [Google Scholar]
  8. Baba, M., Nishimura, O., Kanzaki, N., Okamoto, M., Sawada, H., Iizawa, Y., Shiraishi, M., Aramaki, Y., Okonogi, K., Ogawa, Y., Meguro, K. & Fujino, M. ( 1999; ). A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proceedings of the National Academy of Sciences, USA 96, 5698-5703.[CrossRef]
    [Google Scholar]
  9. Baier, M. & Kurth, R. ( 1997; ). Fighting HIV-1 with IL-16. Nature Medicine 3, 605-606.[CrossRef]
    [Google Scholar]
  10. Bakri, Y., Schiffer, C., Zennou, V., Charneau, P., Kahn, E., Benjouad, A., Gluckman, J. C. & Canque, B. ( 2001; ). The maturation of dendritic cells results in postintegration inhibition of HIV-1 replication. Journal of Immunology 166, 3780-3788.[CrossRef]
    [Google Scholar]
  11. Balotta, C., Bagnarelli, P., Corvasce, S., Mazzucchelli, R., Colombo, M. C., Papagno, L., Santambrogio, S., Ridolfo, A. L., Violin, M., Berlusconi, A., Velleca, R., Facchi, G., Moroni, M., Clementi, M. & Galli, M. ( 1999; ). Identification of two distinct subsets of long-term nonprogressors with divergent viral activity by stromal-derived factor 1 chemokine gene polymorphism analysis. Journal of Infectious Diseases 180, 285-289.[CrossRef]
    [Google Scholar]
  12. Bannert, N., Schenten, D., Craig, S. & Sodroski, J. ( 2000; ). The level of CD4 expression limits infection of primary rhesus monkey macrophages by a T-tropic simian immunodeficiency virus and macrophagetropic human immunodeficiency viruses. Journal of Virology 74, 10984-10993.[CrossRef]
    [Google Scholar]
  13. Baribaud, F., Edwards, T. G., Sharron, M., Brelot, A., Heveker, N., Price, K., Mortari, F., Alizon, M., Tsang, M. & Doms, R. W. ( 2001; ). Antigenically distinct conformations of CXCR4. Journal of Virology 75, 8957-8967.[CrossRef]
    [Google Scholar]
  14. Benkirane, M., Jin, D. Y., Chun, R. F., Koup, R. A. & Jeang, K. T. ( 1997; ). Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5Δ32. Journal of Biological Chemistry 272, 30603-30606.[CrossRef]
    [Google Scholar]
  15. Berger, E. A., Doms, R. W., Fenyo, E.-M., Korber, B. T. M., Littman, D. R., Moore, J. P., Sattentau, Q. J., Schuitemaker, H., Sodroski, J. & Weiss, R. A. ( 1998; ). A new classification for HIV-1. Nature 391, 240.[CrossRef]
    [Google Scholar]
  16. Blaak, H., van′t Wout, A. B., Brouwer, M., Hooibrink, B., Hovenkamp, E. & Schuitemaker, H. ( 2000; ). In vivo HIV-1 infection of CD45RA+CD4+ T cells is established primarily by syncytium-inducing variants and correlates with the rate of CD4+ T cell decline. Proceedings of the National Academy of Sciences, USA 97, 1269-1274.[CrossRef]
    [Google Scholar]
  17. Bleul, C. C., Wu, L., Hoxie, J. A., Springer, T. A. & Mackay, C. R. ( 1997; ). The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proceedings of the National Academy of Sciences, USA 94, 1925-1930.[CrossRef]
    [Google Scholar]
  18. Brelot, A., Heveker, N., Adema, K., Hosie, M. J., Willett, B. & Alizon, M. ( 1999; ). Effect of mutations in the second extracellular loop of CXCR4 on its utilization by human and feline immunodeficiency viruses. Journal of Virology 73, 2576-2586.
    [Google Scholar]
  19. Briant, L., Coudronniere, N., Robert-Hebmann, V., Benkirane, M. & Devaux, C. ( 1996; ). Binding of HIV-1 virions or gp120-anti-gp120 immune complexes to HIV-1-infected quiescent peripheral blood mononuclear cells reveals latent infection. Journal of Immunology 156, 3994-4004.
    [Google Scholar]
  20. Bron, R., Klasse, P. J., Wilkinson, D., Clapham, P. R., Pelchen Matthews, A., Power, C., Wells, T. N., Kim, J., Peiper, S. C., Hoxie, J. A. & Marsh, M. ( 1997; ). Promiscuous use of CC and CXC chemokine receptors in cell-to-cell fusion mediated by a human immunodeficiency virus type 2 envelope protein. Journal of Virology 71, 8405-8415.
    [Google Scholar]
  21. Cao, J., Sullivan, N., Desjardin, E., Parolin, C., Robinson, J., Wyatt, R. & Sodroski, J. ( 1997; ). Replication and neutralization of human immunodeficiency virus type 1 lacking the V1 and V2 variable loops of the gp120 envelope glycoprotein. Journal of Virology 71, 9808-9012.
    [Google Scholar]
  22. Carrington, M., Dean, M., Martin, M. P. & O′Brien, S. J. ( 1999; ). Genetics of HIV-1 infection: chemokine receptor CCR5 polymorphism and its consequences. Human Molecular Genetics 8, 1939-1945.[CrossRef]
    [Google Scholar]
  23. Chackerian, B., Long, E. M., Luciw, P. A. & Overbaugh, J. ( 1997; ). Human immunodeficiency virus type 1 coreceptors participate in postentry stages in the virus replication cycle and function in simian immunodeficiency virus infection. Journal of Virology 71, 3932-3939.
    [Google Scholar]
  24. Chan, D. C., Fass, D., Berger, J. M. & Kim, P. S. ( 1997; ). Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263-273.[CrossRef]
    [Google Scholar]
  25. Chan, D. C., Chutkowski, C. T. & Kim, P. S. ( 1998; ). Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target. Proceedings of the National Academy of Sciences, USA 95, 15613-15617.[CrossRef]
    [Google Scholar]
  26. Chen, Z., Gettie, A., Ho, D. D. & Marx, P. A. ( 1998a; ). Primary SIVsm isolates use the CCR5 coreceptor from sooty mangabeys naturally infected in west Africa: a comparison of coreceptor usage of primary SIVsm, HIV-2, and SIVmac. Virology 246, 113-124.[CrossRef]
    [Google Scholar]
  27. Chen, Z., Kwon, D., Jin, Z., Monard, S., Telfer, P., Jones, M. S., Lu, C. Y., Aguilar, R. F., Ho, D. D. & Marx, P. A. ( 1998b; ). Natural infection of a homozygous Δ24 CCR5 red-capped mangabey with an R2b-tropic simian immunodeficiency virus. Journal of Experimental Medicine 188, 2057-2065.[CrossRef]
    [Google Scholar]
  28. Cho, M. W., Lee, M. K., Carney, M. C., Berson, J. F., Doms, R. W. & Martin, M. A. ( 1998; ). Identification of determinants on a dualtropic human immunodeficiency virus type 1 envelope glycoprotein that confer usage of CXCR4. Journal of Virology 72, 2509-2515.
    [Google Scholar]
  29. Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P. D., Wu, L., Mackay, C. R., LaRosa, G., Newman, W., Gerard, N., Gerard, C. & Sodroski, J. ( 1996; ). The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85, 1135-1148.[CrossRef]
    [Google Scholar]
  30. Choe, H., Farzan, M., Konkel, M., Martin, K., Sun, Y., Marcon, L., Cayabyab, M., Berman, M., Dorf, M. E., Gerard, N., Gerard, C. & Sodroski, J. ( 1998; ). The orphan seven-transmembrane receptor APJ supports the entry of primary T-cell-line-tropic and dualtropic human immunodeficiency virus type 1. Journal of Virology 72, 6113-6118.
    [Google Scholar]
  31. Cicala, C., Arthos, J., Ruiz, M., Vaccarezza, M., Rubbert, A., Riva, A., Wildt, K., Cohen, O. & Fauci, A. S. ( 1999; ). Induction of phosphorylation and intracellular association of CC chemokine receptor 5 and focal adhesion kinase in primary human CD4+ T cells by macrophage-tropic HIV envelope. Journal of Immunology 163, 420-426.
    [Google Scholar]
  32. Clapham, P. R. & Weiss, R. A. ( 1997; ). Immunodeficiency viruses. Spoilt for choice of co-receptors. Nature 388, 230-231.[CrossRef]
    [Google Scholar]
  33. Clapham, P. R., Weber, J. N., Whitby, D., McIntosh, K., Dalgleish, A. G., Maddon, P. J., Deen, K. C., Sweet, R. W. & Weiss, R. A. ( 1989; ). Soluble CD4 blocks the infectivity of diverse strains of HIV and SIV for T cells and monocytes but not for brain and muscle cells. Nature 337, 368-370.[CrossRef]
    [Google Scholar]
  34. Clapham, P. R., Blanc, D. & Weiss, R. A. ( 1991; ). Specific cell surface requirements for the infection of CD4-positive cells by human immunodeficiency virus types 1 and 2 and by simian immunodeficiency virus. Virology 181, 703-715.[CrossRef]
    [Google Scholar]
  35. Clapham, P. R., McKnight, A., Talbot, S. & Wilkinson, D. ( 1996; ). HIV entry into cells by CD4-independent mechanisms. In HIV Infection in CD4 Cells , pp. 83-92. Edited by J. Fantini & J.-M. Sabatier. Leiden:ESCOM.
  36. Cocchi, F., DeVico, A. L., Garzino Demo, A., Arya, S. K., Gallo, R. C. & Lusso, P. ( 1995; ). Identification of RANTES, MIP-1α, and MIP-1β as the major HIV-suppressive factors produced by CD8+ T cells. Science 270, 1811-1815.[CrossRef]
    [Google Scholar]
  37. Cohen, O. J., Paolucci, S., Bende, S. M., Daucher, M., Moriuchi, H., Moriuchi, M., Cicala, C., Davey, R. T.Jr, Baird, B. & Fauci, A. S. ( 1998; ). CXCR4 and CCR5 genetic polymorphisms in long-term nonprogressive human immunodeficiency virus infection: lack of association with mutations other than CCR5-Δ32. Journal of Virology 72, 6215-6217.
    [Google Scholar]
  38. Corbeil, J. & Richman, D. D. ( 1995; ). Productive infection and subsequent interaction of CD4–gp120 at the cellular membrane is required for HIV-induced apoptosis of CD4+ T cells. Journal of General Virology 76, 681-690.[CrossRef]
    [Google Scholar]
  39. Corbeil, J., Tremblay, M. & Richman, D. D. ( 1996; ). HIV-induced apoptosis requires the CD4 receptor cytoplasmic tail and is accelerated by interaction of CD4 with p56lck. Journal of Experimental Medicine 183, 39-48.[CrossRef]
    [Google Scholar]
  40. Cornelissen, M., Mulder-Kampinga, G., Veenstra, J., Zorgdrager, F., Kuiken, C., Hartman, S., Dekker, J., van der Hoek, L., Sol, C., Coutinho, R. & Goudsmit, J. ( 1995; ). Syncytium-inducing (SI) phenotype suppression at seroconversion after intramuscular inoculation of a non-syncytium-inducing/SI phenotypically mixed human immunodeficiency virus population. Journal of Virology 69, 1810-1818.
    [Google Scholar]
  41. Cruikshank, W. W., Kornfeld, H. & Center, D. M. ( 1998; ). Signaling and functional properties of interleukin-16. International Reviews of Immunology 16, 523-540.
    [Google Scholar]
  42. Curtis, B. M., Scharnowske, S. & Watson, A. J. ( 1992; ). Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120. Proceedings of the National Academy of Sciences, USA 89, 8356-8360.[CrossRef]
    [Google Scholar]
  43. Daar, E. S., Li, X. L., Moudgil, T. & Ho, D. D. ( 1990; ). High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 isolates. Proceedings of the National Academy of Sciences, USA 87, 6574-6578.[CrossRef]
    [Google Scholar]
  44. Danieli, T., Pelletier, S. L., Henis, Y. I. & White, J. M. ( 1996; ). Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers. Journal of Cell Biology 133, 559-569.[CrossRef]
    [Google Scholar]
  45. Davis, C. B., Dikic, I., Unutmaz, D., Hill, C. M., Arthos, J., Siani, M. A., Thompson, D. A., Schlessinger, J. & Littman, D. R. ( 1997; ). Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5. Journal of Experimental Medicine 186, 1793-1798.[CrossRef]
    [Google Scholar]
  46. Dean, M., Carrington, M., Winkler, C., Huttley, G. A., Smith, M. W., Allikmets, R., Goedert, J. J., Buchbinder, S. P., Vittinghoff, E., Gomperts, E., Donfield, S., Vlahov, D., Kaslow, R., Saah, A., Rinaldo, C., Detels, R. & O′Brien, S. J. ( 1996; ). Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273, 1856-1862.[CrossRef]
    [Google Scholar]
  47. Delezay, O., Koch, N., Yahi, N., Hammache, D., Tourres, C., Tamalet, C. & Fantini, J. ( 1997; ). Co-expression of CXCR4/fusin and galactosylceramide in the human intestinal epithelial cell line HT-29. AIDS 11, 1311-1318.[CrossRef]
    [Google Scholar]
  48. Deng, H., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhart, M., Di Marzio, P., Marmon, S., Sutton, R. E., Hill, C. M., Davis, C. B., Peiper, S. C., Schall, T. J., Littman, D. R. & Landau, N. R. ( 1996; ). Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661-666.[CrossRef]
    [Google Scholar]
  49. Deng, H. K., Unutmaz, D., KewalRamani, V. N. & Littman, D. R. ( 1997; ). Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature 388, 296-300.[CrossRef]
    [Google Scholar]
  50. Donzella, G. A., Schols, D., Lin, S. W., Este, J. A., Nagashima, K. A., Maddon, P. J., Allaway, G. P., Sakmar, T. P., Henson, G., De Clercq, E. & Moore, J. P. ( 1998; ). AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nature Medicine 4, 72-77.[CrossRef]
    [Google Scholar]
  51. Doranz, B. J., Rucker, J., Yi, Y., Smyth, R. J., Samson, M., Peiper, S. C., Parmentier, M., Collman, R. G. & Doms, R. W. ( 1996; ). A dual-tropic primary HIV-1 isolate that uses fusin and the β-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85, 1149-1158.[CrossRef]
    [Google Scholar]
  52. Doranz, B. J., Orsini, M. J., Turner, J. D., Hoffman, T. L., Berson, J. F., Hoxie, J. A., Peiper, S. C., Brass, L. F. & Doms, R. W. ( 1999; ). Identification of CXCR4 domains that support coreceptor and chemokine receptor functions. Journal of Virology 73, 2752-2761.
    [Google Scholar]
  53. Dragic, T., Litwin, V., Allaway, G. P., Martin, S. R., Huang, Y., Nagashima, K. A., Cayanan, C., Maddon, P. J., Koup, R. A., Moore, J. P. & Paxton, W. A. ( 1996; ). HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381, 667-673.[CrossRef]
    [Google Scholar]
  54. Dutch, R. E., Jardetzky, T. S. & Lamb, R. A. ( 2000; ). Virus membrane fusion proteins: biological machines that undergo a metamorphosis. Bioscience Reports 20, 597-612.[CrossRef]
    [Google Scholar]
  55. Earl, P. L., Doms, R. W. & Moss, B. ( 1990; ). Oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein. Proceedings of the National Academy of Sciences, USA 87, 648-652.[CrossRef]
    [Google Scholar]
  56. Edinger, A. L., Amedee, A., Miller, K., Doranz, B. J., Endres, M., Sharron, M., Samson, M., Lu, Z. H., Clements, J. E., Murphey Corb, M., Peiper, S. C., Parmentier, M., Broder, C. C. & Doms, R. W. ( 1997; ). Differential utilization of CCR5 by macrophage and T cell tropic simian immunodeficiency virus strains. Proceedings of the National Academy of Sciences, USA 94, 4005-4010.[CrossRef]
    [Google Scholar]
  57. Edinger, A. L., Hoffman, T. L., Sharron, M., Lee, B., Yi, Y., Choe, W., Kolson, D. L., Mitrovic, B., Zhou, Y., Faulds, D., Collman, R. G., Hesselgesser, J., Horuk, R. & Doms, R. W. ( 1998; ). An orphan seven-transmembrane domain receptor expressed widely in the brain functions as a coreceptor for human immunodeficiency virus type 1 and simian immunodeficiency virus. Journal of Virology 72, 7934-7940.
    [Google Scholar]
  58. Fantini, J., Cook, D. G., Nathanson, N., Spitalnik, S. L. & Gonzalez Scarano, F. ( 1993; ). Infection of colonic epithelial cell lines by type 1 human immunodeficiency virus is associated with cell surface expression of galactosylceramide, a potential alternative gp120 receptor. Proceedings of the National Academy of Sciences, USA 90, 2700-2704.[CrossRef]
    [Google Scholar]
  59. Farzan, M., Choe, H., Martin, K., Marcon, L., Hofmann, W., Karlsson, G., Sun, Y., Barrett, P., Marchand, N., Sullivan, N., Gerard, N., Gerard, C. & Sodroski, J. ( 1997; ). Two orphan seven-transmembrane segment receptors which are expressed in CD4-positive cells support simian immunodeficiency virus infection. Journal of Experimental Medicine 186, 405-411.[CrossRef]
    [Google Scholar]
  60. Farzan, M., Choe, H., Vaca, L., Martin, K., Sun, Y., Desjardins, E., Ruffing, N., Wu, L., Wyatt, R., Gerard, N., Gerard, C. & Sodroski, J. ( 1998; ). A tyrosine-rich region in the N terminus of CCR5 is important for human immunodeficiency virus type 1 entry and mediates an association between gp120 and CCR5. Journal of Virology 72, 1160-1164.
    [Google Scholar]
  61. Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. ( 1996; ). HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872-877.[CrossRef]
    [Google Scholar]
  62. Fortin, J. F., Barbeau, B., Hedman, H., Lundgren, E. & Tremblay, M. J. ( 1999; ). Role of the leukocyte function antigen-1 conformational state in the process of human immunodeficiency virus type 1-mediated syncytium formation and virus infection. Virology 257, 228-238.[CrossRef]
    [Google Scholar]
  63. Gabuzda, D. & Wang, J. ( 2000; ). Chemokine receptors and mechanisms of cell death in HIV neuropathogenesis. Journal of Neurovirology 6 (Suppl. 1), S24–S32.[CrossRef]
    [Google Scholar]
  64. Gartner, S., Markovits, P., Markovitz, D. M., Kaplan, M. H., Gallo, R. C. & Popovic, M. ( 1986; ). The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233, 215-219.[CrossRef]
    [Google Scholar]
  65. Geijtenbeek, T. B., Kwon, D. S., Torensma, R., van Vliet, S. J., van Duijnhoven, G. C., Middel, J., Cornelissen, I. L., Nottet, H. S., KewalRamani, V. N., Littman, D. R., Figdor, C. G. & van Kooyk, Y. ( 2000; ). DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587-597.[CrossRef]
    [Google Scholar]
  66. Ghorpade, A., Nukuna, A., Che, M., Haggerty, S., Persidsky, Y., Carter, E., Carhart, L., Shafer, L. & Gendelman, H. E. ( 1998; ). Human immunodeficiency virus neurotropism: an analysis of viral replication and cytopathicity for divergent strains in monocytes and microglia. Journal of Virology 72, 3340-3350.
    [Google Scholar]
  67. Gonzalez, E., Dhanda, R., Bamshad, M., Mummidi, S., Geevarghese, R., Catano, G., Anderson, S. A., Walter, E. A., Stephan, K. T., Hammer, M. F., Mangano, A., Sen, L., Clark, R. A., Ahuja, S. S., Dolan, M. J. & Ahuja, S. K. ( 2001; ). Global survey of genetic variation in CCR5, RANTES, and MIP-1α: impact on the epidemiology of the HIV-1 pandemic. Proceedings of the National Academy of Sciences, USA 98, 5199-5204.[CrossRef]
    [Google Scholar]
  68. Gorry, P. R., Bristol, G., Zack, J. A., Ritola, K., Swanstrom, R., Birch, C. J., Bell, J. E., Bannert, N., Crawford, K., Wang, H., Schols, D., De Clercq, E., Kunstman, K., Wolinsky, S. M. & Gabuzda, D. ( 2001; ). Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. Journal of Virology 75, 10073-10089.[CrossRef]
    [Google Scholar]
  69. Gosling, J., Monteclaro, F. S., Atchison, R. E., Arai, H., Tsou, C. L., Goldsmith, M. A. & Charo, I. F. ( 1997; ). Molecular uncoupling of C-C chemokine receptor 5-induced chemotaxis and signal transduction from HIV-1 coreceptor activity. Proceedings of the National Academy of Sciences, USA 94, 5061-5066.[CrossRef]
    [Google Scholar]
  70. Granelli-Piperno, A., Delgado, E., Finkel, V., Paxton, W. & Steinman, R. M. ( 1998; ). Immature dendritic cells selectively replicate macrophagetropic (M- tropic) human immunodeficiency virus type 1, while mature cells efficiently transmit both M- and T-tropic virus to T cells. Journal of Virology 72, 2733-2737.
    [Google Scholar]
  71. Guillon, C., van der Ende, M. E., Boers, P. H., Gruters, R. A., Schutten, M. & Osterhaus, A. D. ( 1998; ). Coreceptor usage of human immunodeficiency virus type 2 primary isolates and biological clones is broad and does not correlate with their syncytium-inducing capacities. Journal of Virology 72, 6260-6263.
    [Google Scholar]
  72. Hallenberger, S., Moulard, M., Sordel, M., Klenk, H. D. & Garten, W. ( 1997; ). The role of eukaryotic subtilisin-like endoproteases for the activation of human immunodeficiency virus glycoproteins in natural host cells. Journal of Virology 71, 1036-1045.
    [Google Scholar]
  73. Harouse, J. M., Bhat, S., Spitalnik, S. L., Laughlin, M., Stefano, K., Silberberg, D. H. & Gonzalez Scarano, F. ( 1991; ). Inhibition of entry of HIV-1 in neural cell lines by antibodies against galactosyl ceramide. Science 253, 320-323.[CrossRef]
    [Google Scholar]
  74. Harouse, J. M., Gettie, A., Tan, R. C., Blanchard, J. & Cheng-Mayer, C. ( 1999; ). Distinct pathogenic sequela in rhesus macaques infected with CCR5 or CXCR4 utilizing SHIVs. Science 284, 816-819.[CrossRef]
    [Google Scholar]
  75. Harrop, H. A., Coombe, D. R. & Rider, C. C. ( 1994; ). Heparin specifically inhibits binding of V3 loop antibodies to HIV-1 gp120, an effect potentiated by CD4 binding. AIDS 8, 183-192.[CrossRef]
    [Google Scholar]
  76. He, J., Chen, Y., Farzan, M., Choe, H., Ohagen, A., Gartner, S., Busciglio, J., Yang, X., Hofmann, W., Newman, W., Mackay, C. R., Sodroski, J. & Gabuzda, D. ( 1997; ). CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 385, 645-649.[CrossRef]
    [Google Scholar]
  77. Healey, D., Dianda, L., Moore, J. P., McDougal, J. S., Moore, M. J., Estess, P., Buck, D., Kwong, P. D., Beverley, P. C. & Sattentau, Q. J. ( 1990; ). Novel anti-CD4 monoclonal antibodies separate human immunodeficiency virus infection and fusion of CD4+ cells from virus binding. Journal of Experimental Medicine 172, 1233-1242.[CrossRef]
    [Google Scholar]
  78. Hesselgesser, J., Halks-Miller, M., DelVecchio, V., Peiper, S. C., Hoxie, J., Kolson, D. L., Taub, D. & Horuk, R. ( 1997; ). CD4-independent association between HIV-1 gp120 and CXCR4: functional chemokine receptors are expressed in human neurons. Current Biology 7, 112-121.[CrossRef]
    [Google Scholar]
  79. Hibbitts, S., Reeves, J. D., Simmons, G., Gray, P. W., Epstein, L. G., Schols, D., De Clercq, E., Wells, T. N. C., Proudfoot, A. E. I. & Clapham, P. R. ( 1999; ). Coreceptor ligand inhibition of fetal brain cell infection by HIV type 1. AIDS Research and Human Retroviruses 15, 989-1000.[CrossRef]
    [Google Scholar]
  80. Hill, C. M., Kwon, D., Jones, M., Davis, C. B., Marmon, S., Daugherty, B. L., DeMartino, J. A., Springer, M. S., Unutmaz, D. & Littman, D. R. ( 1998; ). The amino terminus of human CCR5 is required for its function as a receptor for diverse human and simian immunodeficiency virus envelope glycoproteins. Virology 248, 357-371.[CrossRef]
    [Google Scholar]
  81. Hoffman, T. L., LaBranche, C. C., Zhang, W., Canziani, G., Robinson, J., Chaiken, I., Hoxie, J. A. & Doms, R. W. ( 1999; ). Stable exposure of the coreceptor-binding site in a CD4-independent HIV- 1 envelope protein. Proceedings of the National Academy of Sciences, USA 96, 6359-6364.[CrossRef]
    [Google Scholar]
  82. Howard, O. M., Shirakawa, A. K., Turpin, J. A., Maynard, A., Tobin, G. J., Carrington, M., Oppenheim, J. J. & Dean, M. ( 1999; ). Naturally occurring CCR5 extracellular and transmembrane domain variants affect HIV-1 co-receptor and ligand binding function. Journal of Biological Chemistry 274, 16228-16234.[CrossRef]
    [Google Scholar]
  83. Huang, Y., Paxton, W. A., Wolinsky, S. M., Neumann, A. U., Zhang, L., He, T., Kang, S., Ceradini, D., Jin, Z., Yazdanbakhsh, K., Kunstman, K., Erickson, D., Dragon, E., Landau, N. R., Phair, J., Ho, D. D. & Koup, R. A. ( 1996; ). The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nature Medicine 2, 1240-1243.[CrossRef]
    [Google Scholar]
  84. Huang, B., Yachou, A., Fleury, S., Hendrickson, W. A. & Sekaly, R. P. ( 1997; ). Analysis of the contact sites on the CD4 molecule with class II MHC molecule: co-ligand versus co-receptor function. Journal of Immunology 158, 216-225.
    [Google Scholar]
  85. Hwang, S. S., Boyle, T. J., Lyerly, H. K. & Cullen, B. R. ( 1991; ). Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science 253, 71-74.[CrossRef]
    [Google Scholar]
  86. Ito, M., Baba, M., Sato, A., Pauwels, R., De Clercq, E. & Shigeta, S. ( 1987; ). Inhibitory effect of dextran sulfate and heparin on the replication of human immunodeficiency virus (HIV) in vitro. Antiviral Research 7, 361-367.[CrossRef]
    [Google Scholar]
  87. Janeway, C. A.Jr ( 1992; ). The T cell receptor as a multicomponent signalling machine: CD4/CD8 coreceptors and CD45 in T cell activation. Annual Review of Immunology 10, 645-674.[CrossRef]
    [Google Scholar]
  88. Kaneko, Y., Yoshida, O., Nakagawa, R., Yoshida, T., Date, M., Ogihara, S., Shioya, S., Matsuzawa, Y., Nagashima, N., Irie, Y. and others ( 1990; ). Inhibition of HIV-1 infectivity with curdlan sulfate in vitro. Biochemical Pharmacology 39, 793–797.[CrossRef]
    [Google Scholar]
  89. Kelloway, J. S. ( 1997; ). Zafirlukast: the first leukotriene-receptor antagonist approved for the treatment of asthma. Annals of Pharmacotherapy 31, 1012-1021.
    [Google Scholar]
  90. Kilby, J. M., Hopkins, S., Venetta, T. M., DiMassimo, B., Cloud, G. A., Lee, J. Y., Alldredge, L., Hunter, E., Lambert, D., Bolognesi, D., Matthews, T., Johnson, M. R., Nowak, M. A., Shaw, G. M. & Saag, M. S. ( 1998; ). Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nature Medicine 4, 1302-1307.[CrossRef]
    [Google Scholar]
  91. Kledal, T. N., Rosenkilde, M. M., Coulin, F., Simmons, G., Johnsen, A. H., Alouani, S., Power, C. A., Luttichau, H. R., Gerstoft, J., Clapham, P. R., Clark Lewis, I., Wells, T. N. C. & Schwartz, T. W. ( 1997; ). A broad-spectrum chemokine antagonist encoded by Kaposi′s sarcoma-associated herpesvirus. Science 277, 1656-1659.[CrossRef]
    [Google Scholar]
  92. Koito, A., Harrowe, G., Levy, J. A. & Cheng-Mayer, C. ( 1994; ). Functional role of the V1/V2 region of human immunodeficiency virus type 1 envelope glycoprotein gp120 in infection of primary macrophages and soluble CD4 neutralization. Journal of Virology 68, 2253-2259.
    [Google Scholar]
  93. Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J. & Hendrickson, W. A. ( 1998; ). Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648-659.[CrossRef]
    [Google Scholar]
  94. Lambotte, O., Taoufik, Y., de Goer, M. G., Wallon, C., Goujard, C. & Delfraissy, J. F. ( 2000; ). Detection of infectious HIV in circulating monocytes from patients on prolonged highly active antiretroviral therapy. Journal of Acquired Immune Deficiency Syndromes 23, 114-119.[CrossRef]
    [Google Scholar]
  95. Lapham, C. K., Zaitseva, M. B., Lee, S., Romanstseva, T. & Golding, H. ( 1999; ). Fusion of monocytes and macrophages with HIV-1 correlates with biochemical properties of CXCR4 and CCR5. Nature Medicine 5, 303-308.[CrossRef]
    [Google Scholar]
  96. Larkin, M., Childs, R. A., Matthews, T. J., Thiel, S., Mizuochi, T., Lawson, A. M., Savill, J. S., Haslett, C., Diaz, R. & Feizi, T. ( 1989; ). Oligosaccharide-mediated interactions of the envelope glycoprotein gp120 of HIV-1 that are independent of CD4 recognition. AIDS 3, 793-798.[CrossRef]
    [Google Scholar]
  97. Lathey, J. L., Pratt, R. D. & Spector, S. A. ( 1997; ). Appearance of autologous neutralizing antibody correlates with reduction in virus load and phenotype switch during primary infection with human immunodeficiency virus type 1. Journal of Infectious Diseases 175, 231-232.[CrossRef]
    [Google Scholar]
  98. Lee, B., Doranz, B. J., Rana, S., Yi, Y., Mellado, M., Frade, J. M., Martinez, A. C., O′Brien, S. J., Dean, M., Collman, R. G. & Doms, R. W. ( 1998; ). Influence of the CCR2-V64I polymorphism on human immunodeficiency virus type 1 coreceptor activity and on chemokine receptor function of CCR2b, CCR3, CCR5, and CXCR4. Journal of Virology 72, 7450-7458.
    [Google Scholar]
  99. Lee, B., Sharron, M., Blanpain, C., Doranz, B. J., Vakili, J., Setoh, P., Berg, E., Liu, G., Guy, H. R., Durell, S. R., Parmentier, M., Chang, C. N., Price, K., Tsang, M. & Doms, R. W. ( 1999; ). Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function. Journal of Biological Chemistry 274, 9617-9626.[CrossRef]
    [Google Scholar]
  100. Lee, S., Tiffany, H. L., King, L., Murphy, P. M., Golding, H. & Zaitseva, M. B. ( 2000; ). CCR8 on human thymocytes functions as a human immunodeficiency virus type 1 coreceptor. Journal of Virology 74, 6946-6952.[CrossRef]
    [Google Scholar]
  101. Liu, H., Chao, D., Nakayama, E. E., Taguchi, H., Goto, M., Xin, X., Takamatsu, J., Saito, H., Ishikawa, Y., Akaza, T., Juji, T., Takebe, Y., Ohishi, T., Fukutake, K., Maruyama, Y., Yashiki, S., Sonoda, S., Nakamura, T., Nagai, Y., Iwamoto, A. & Shioda, T. ( 1999a; ). Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proceedings of the National Academy of Sciences, USA 96, 4581-4585.[CrossRef]
    [Google Scholar]
  102. Liu, Y., Cruikshank, W. W., O′Loughlin, T., O′Reilly, P., Center, D. M. & Kornfeld, H. ( 1999b; ). Identification of a CD4 domain required for interleukin-16 binding and lymphocyte activation. Journal of Biological Chemistry 274, 23387-23395.[CrossRef]
    [Google Scholar]
  103. Lu, Z., Berson, J. F., Chen, Y., Turner, J. D., Zhang, T., Sharron, M., Jenks, M. H., Wang, Z., Kim, J., Rucker, J., Hoxie, J. A., Peiper, S. C. & Doms, R. W. ( 1997; ). Evolution of HIV-1 coreceptor usage through interactions with distinct CCR5 and CXCR4 domains. Proceedings of the National Academy of Sciences, USA 94, 6426-6431.[CrossRef]
    [Google Scholar]
  104. Lusso, P., Secchiero, P., Crowley, R. W., Garzino-Demo, A., Berneman, Z. N. & Gallo, R. C. ( 1994; ). CD4 is a critical component of the receptor for human herpesvirus 7: interference with human immunodeficiency virus. Proceedings of the National Academy of Sciences, USA 91, 3872-3876.[CrossRef]
    [Google Scholar]
  105. Ma, Q., Jones, D., Borghesani, P. R., Segal, R. A., Nagasawa, T., Kishimoto, T., Bronson, R. T. & Springer, T. A. ( 1998; ). Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proceedings of the National Academy of Sciences, USA 95, 9448-9453.[CrossRef]
    [Google Scholar]
  106. McClure, M. O., Moore, J. P., Blanc, D. F., Scotting, P., Cook, G. M., Keynes, R. J., Weber, J. N., Davies, D. & Weiss, R. A. ( 1992; ). Investigations into the mechanism by which sulfated polysaccharides inhibit HIV infection in vitro. AIDS Research and Human Retroviruses 8, 19-26.[CrossRef]
    [Google Scholar]
  107. McDermott, D. H., Zimmerman, P. A., Guignard, F., Kleeberger, C. A., Leitman, S. F. & Murphy, P. M. ( 1998; ). CCR5 promoter polymorphism and HIV-1 disease progression. Multicenter AIDS Cohort Study (MACS). Lancet 352, 866-870.[CrossRef]
    [Google Scholar]
  108. McDermott, D. H., Beecroft, M. J., Kleeberger, C. A., Al-Sharif, F. M., Ollier, W. E., Zimmerman, P. A., Boatin, B. A., Leitman, S. F., Detels, R., Hajeer, A. H. & Murphy, P. M. ( 2000; ). Chemokine RANTES promoter polymorphism affects risk of both HIV infection and disease progression in the Multicenter AIDS Cohort Study. AIDS 14, 2671-2678.[CrossRef]
    [Google Scholar]
  109. Mack, M., Luckow, B., Nelson, P. J., Cihak, J., Simmons, G., Clapham, P. R., Signoret, N., Marsh, M., Stangassinger, M., Borlat, F., Wells, T. N., Schlondorff, D. & Proudfoot, A. E. ( 1998; ). Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. Journal of Experimental Medicine 187, 1215-1224.[CrossRef]
    [Google Scholar]
  110. McKnight, A., Dittmar, M. T., Moniz Periera, J., Ariyoshi, K., Reeves, J. D., Hibbitts, S., Whitby, D., Aarons, E., Proudfoot, A. E., Whittle, H. & Clapham, P. R. ( 1998; ). A broad range of chemokine receptors are used by primary isolates of human immunodeficiency virus type 2 as coreceptors with CD4. Journal of Virology 72, 4065-4071.
    [Google Scholar]
  111. Maddon, P. J., Dalgleish, A. G., McDougal, J. S., Clapham, P. R., Weiss, R. A. & Axel, R. ( 1986; ). The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47, 333-348.[CrossRef]
    [Google Scholar]
  112. Mangano, A., Kopka, J., Batalla, M., Bologna, R. & Sen, L. ( 2000; ). Protective effect of CCR2–64I and not of CCR5-Δ32 and SDF1–3′A in pediatric HIV-1 infection. Journal of Acquired Immune Deficiency Syndromes 23, 52-57.[CrossRef]
    [Google Scholar]
  113. Martin, M. P., Carrington, M., Dean, M., O′Brien, S. J., Sheppard, H. W., Wegner, S. A. & Michael, N. L. ( 1998a; ). CXCR4 polymorphisms and HIV-1 pathogenesis. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology 19, 430.
    [Google Scholar]
  114. Martin, M. P., Dean, M., Smith, M. W., Winkler, C., Gerrard, B., Michael, N. L., Lee, B., Doms, R. W., Margolick, J., Buchbinder, S., Goedert, J. J., O′Brien, T. R., Hilgartner, M. W., Vlahov, D., O′Brien, S. J. & Carrington, M. ( 1998b; ). Genetic acceleration of AIDS progression by a promoter variant of CCR5. Science 282, 1907-1911.[CrossRef]
    [Google Scholar]
  115. Masurier, C., Salomon, B., Guettari, N., Pioche, C., Lachapelle, F., Guigon, M. & Klatzmann, D. ( 1998; ). Dendritic cells route human immunodeficiency virus to lymph nodes after vaginal or intravenous administration to mice. Journal of Virology 72, 7822-7829.
    [Google Scholar]
  116. Meister, S., Otto, C., Papkalla, A., Krumbiegel, M., Pohlmann, S. & Kirchhoff, F. ( 2001; ). Basic amino acid residues in the V3 loop of simian immunodeficiency virus envelope alter viral coreceptor tropism and infectivity but do not allow efficient utilization of CXCR4 as entry cofactor. Virology 284, 287-296.[CrossRef]
    [Google Scholar]
  117. Mellado, M., Rodriguez-Frade, J. M., Vila-Coro, A. J., de Ana, A. M. & Martinez, A. C. ( 1999; ). Chemokine control of HIV-1 infection. Nature 400, 723-724.[CrossRef]
    [Google Scholar]
  118. Michael, N. L. & Moore, J. P. ( 1999; ). HIV-1 entry inhibitors: evading the issue. Nature Medicine 5, 740-742.[CrossRef]
    [Google Scholar]
  119. Michael, N. L., Nelson, J. A., KewalRamani, V. N., Chang, G., O′Brien, S. J., Mascola, J. R., Volsky, B., Louder, M., White, G. C.II, Littman, D. R., Swanstrom, R. & O′Brien, T. R. ( 1998; ). Exclusive and persistent use of the entry coreceptor CXCR4 by human immunodeficiency virus type 1 from a subject homozygous for CCR5 Δ32. Journal of Virology 72, 6040-6047.
    [Google Scholar]
  120. Mitsuya, H., Looney, D. J., Kuno, S., Ueno, R., Wong-Staal, F. & Broder, S. ( 1988; ). Dextran sulfate suppression of viruses in the HIV family: inhibition of virion binding to CD4+ cells. Science 240, 646-649.[CrossRef]
    [Google Scholar]
  121. Moebius, U., Pallai, P., Harrison, S. C. & Reinherz, E. L. ( 1993; ). Delineation of an extended surface contact area on human CD4 involved in class II major histocompatibility complex binding. Proceedings of the National Academy of Sciences, USA 90, 8259-8263.[CrossRef]
    [Google Scholar]
  122. Moir, S., Perreault, J. & Poulin, L. ( 1996; ). Postbinding events mediated by human immunodeficiency virus type 1 are sensitive to modifications in the D4-transmembrane linker region of CD4. Journal of Virology 70, 8019-8028.
    [Google Scholar]
  123. Mondor, I., Ugolini, S. & Sattentau, Q. J. ( 1998; ). Human immunodeficiency virus type 1 attachment to HeLa CD4 cells is CD4 independent and gp120 dependent and requires cell surface heparans. Journal of Virology 72, 3623-3634.
    [Google Scholar]
  124. Moore, J. P., McKeating, J. A., Weiss, R. A. & Sattentau, Q. J. ( 1990; ). Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science 250, 1139-1142.[CrossRef]
    [Google Scholar]
  125. Moore, J. P., McKeating, J. A., Huang, Y. X., Ashkenazi, A. & Ho, D. D. ( 1992; ). Virions of primary human immunodeficiency virus type 1 isolates resistant to soluble CD4 (sCD4) neutralization differ in sCD4 binding and glycoprotein gp120 retention from sCD4-sensitive isolates. Journal of Virology 66, 235-243.
    [Google Scholar]
  126. Morner, A., Bjorndal, A., Albert, J., Kewalramani, V. N., Littman, D. R., Inoue, R., Thorstensson, R., Fenyo, E. M. & Bjorling, E. ( 1999; ). Primary human immunodeficiency virus type 2 (HIV-2) isolates, like HIV-1 isolates, frequently use CCR5 but show promiscuity in coreceptor usage. Journal of Virology 73, 2343-2349.
    [Google Scholar]
  127. Moulard, M., Lortat-Jacob, H., Mondor, I., Roca, G., Wyatt, R., Sodroski, J., Zhao, L., Olson, W., Kwong, P. D. & Sattentau, Q. J. ( 2000; ). Selective interactions of polyanions with basic surfaces on human immunodeficiency virus type 1 gp120. Journal of Virology 74, 1948-1960.[CrossRef]
    [Google Scholar]
  128. Mummidi, S., Ahuja, S. S., Gonzalez, E., Anderson, S. A., Santiago, E. N., Stephan, K. T., Craig, F. E., O′Connell, P., Tryon, V., Clark, R. A., Dolan, M. J. & Ahuja, S. K. ( 1998; ). Genealogy of the CCR5 locus and chemokine system gene variants associated with altered rates of HIV-1 disease progression. Nature Medicine 4, 786-793.[CrossRef]
    [Google Scholar]
  129. Myszka, D. G., Sweet, R. W., Hensley, P., Brigham-Burke, M., Kwong, P. D., Hendrickson, W. A., Wyatt, R., Sodroski, J. & Doyle, M. L. ( 2000; ). Energetics of the HIV gp120–CD4 binding reaction. Proceedings of the National Academy of Sciences, USA 97, 9026-9031.[CrossRef]
    [Google Scholar]
  130. Nakayama, E. E., Hoshino, Y., Xin, X., Liu, H., Goto, M., Watanabe, N., Taguchi, H., Hitani, A., Kawana-Tachikawa, A., Fukushima, M., Yamada, K., Sugiura, W., Oka, S. I., Ajisawa, A., Sato, H., Takebe, Y., Nakamura, T., Nagai, Y., Iwamoto, A. & Shioda, T. ( 2000; ). Polymorphism in the interleukin-4 promoter affects acquisition of human immunodeficiency virus type 1 syncytium-inducing phenotype. Journal of Virology 74, 5452-5459.[CrossRef]
    [Google Scholar]
  131. Olson, W. C., Rabut, G. E., Nagashima, K. A., Tran, D. N., Anselma, D. J., Monard, S. P., Segal, J. P., Thompson, D. A., Kajumo, F., Guo, Y., Moore, J. P., Maddon, P. J. & Dragic, T. ( 1999; ). Differential inhibition of human immunodeficiency virus type 1 fusion, gp120 binding, and CC-chemokine activity by monoclonal antibodies to CCR5. Journal of Virology 73, 4145-4155.
    [Google Scholar]
  132. Ostrowski, M. A., Chun, T. W., Justement, S. J., Motola, I., Spinelli, M. A., Adelsberger, J., Ehler, L. A., Mizell, S. B., Hallahan, C. W. & Fauci, A. S. ( 1999; ). Both memory and CD45RA+/CD62L+ naive CD4+ T cells are infected in human immunodeficiency virus type 1-infected individuals. Journal of Virology 73, 6430-6435.
    [Google Scholar]
  133. Owen, S. M., Masciotra, S., Novembre, F., Yee, J., Switzer, W. M., Ostyula, M. & Lal, R. B. ( 2000; ). Simian immunodeficiency viruses of diverse origin can use CXCR4 as a coreceptor for entry into human cells. Journal of Virology 74, 5702-5708.[CrossRef]
    [Google Scholar]
  134. Owman, C., Garzino-Demo, A., Cocchi, F., Popovic, M., Sabirsh, A. & Gallo, R. C. ( 1998; ). The leukotriene B4 receptor functions as a novel type of coreceptor mediating entry of primary HIV-1 isolates into CD4-positive cells. Proceedings of the National Academy of Sciences, USA 95, 9530-9534.[CrossRef]
    [Google Scholar]
  135. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M. & Miyano, M. ( 2000; ). Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739-745.[CrossRef]
    [Google Scholar]
  136. Paquette, J. S., Fortin, J. F., Blanchard, L. & Tremblay, M. J. ( 1998; ). Level of ICAM-1 surface expression on virus producer cells influences both the amount of virion-bound host ICAM-1 and human immunodeficiency virus type 1 infectivity. Journal of Virology 72, 9329-9336.
    [Google Scholar]
  137. Patterson, S., Robinson, S. P., English, N. R. & Knight, S. C. ( 1999; ). Subpopulations of peripheral blood dendritic cells show differential susceptibility to infection with a lymphotropic strain of HIV-1. Immunology Letters 66, 111-116.[CrossRef]
    [Google Scholar]
  138. Patterson, S., Rae, A., Hockey, N., Gilmour, J. & Gotch, F. ( 2001; ). Plasmacytoid dendritic cells are highly susceptible to human immunodeficiency virus type 1 infection and release infectious virus. Journal of Virology 75, 6710-6713.[CrossRef]
    [Google Scholar]
  139. Philpott, S., Burger, H., Charbonneau, T., Grimson, R., Vermund, S. H., Visosky, A., Nachman, S., Kovacs, A., Tropper, P., Frey, H. & Weiser, B. ( 1999; ). CCR5 genotype and resistance to vertical transmission of HIV-1. Journal of Acquired Immune Deficiency Syndromes 21, 189-193.[CrossRef]
    [Google Scholar]
  140. Picard, L., Simmons, G., Power, C. A., Meyer, A., Weiss, R. A. & Clapham, P. R. ( 1997a; ). Multiple extracellular domains of CCR-5 contribute to human immunodeficiency virus type 1 entry and fusion. Journal of Virology 71, 5003-5011.
    [Google Scholar]
  141. Picard, L., Wilkinson, D. A., McKnight, A., Gray, P. W., Hoxie, J. A., Clapham, P. R. & Weiss, R. A. ( 1997b; ). Role of the amino-terminal extracellular domain of CXCR-4 in human immunodeficiency virus type 1 entry. Virology 231, 105-111.[CrossRef]
    [Google Scholar]
  142. Platt, E. J., Kuhmann, S. E., Rose, P. P. & Kabat, D. ( 2001; ). Adaptive mutations in the V3 loop of gp120 enhance fusogenicity of human immunodeficiency virus type 1 and enable use of a CCR5 coreceptor that lacks the amino-terminal sulfated region. Journal of Virology 75, 12266-12278.[CrossRef]
    [Google Scholar]
  143. Pohlmann, S., Soilleux, E. J., Baribaud, F., Leslie, G. J., Morris, L. S., Trowsdale, J., Lee, B., Coleman, N. & Doms, R. W. ( 2001; ). DC-SIGNR, a DC-SIGN homologue expressed in endothelial cells, binds to human and simian immunodeficiency viruses and activates infection in trans. Proceedings of the National Academy of Sciences, USA 98, 2670-2675.[CrossRef]
    [Google Scholar]
  144. Power, C., McArthur, J. C., Johnson, R. T., Griffin, D. E., Glass, J. D., Perryman, S. & Chesebro, B. ( 1994; ). Demented and nondemented patients with AIDS differ in brain-derived human immunodeficiency virus type 1 envelope sequences. Journal of Virology 68, 4643-4649.
    [Google Scholar]
  145. Puffer, B. A., Pohlmann, S., Edinger, A. L., Carlin, D., Sanchez, M. D., Reitter, J., Watry, D. D., Fox, H. S., Desrosiers, R. C. & Doms, R. W. ( 2002; ). CD4 independence of simian immunodeficiency virus Envs is associated with macrophage tropism, neutralization sensitivity, and attenuated pathogenicity. Journal of Virology 76, 2595-2605.[CrossRef]
    [Google Scholar]
  146. Quillent, C., Oberlin, E., Braun, J., Rousset, D., Gonzalez-Canali, G., Metais, P., Montagnier, L., Virelizier, J. L., Arenzana-Seisdedos, F. & Beretta, A. ( 1998; ). HIV-1-resistance phenotype conferred by combination of two separate inherited mutations of CCR5 gene. Lancet 351, 14-18.[CrossRef]
    [Google Scholar]
  147. Ravichandran, K. S., Collins, T. L. & Burakoff, S. J. ( 1996; ). CD4 and signal transduction. Current Topics in Microbiology and Immunology 205, 47-62.
    [Google Scholar]
  148. Reece, J. C., Handley, A. J., Anstee, E. J., Morrison, W. A., Crowe, S. M. & Cameron, P. U. ( 1998; ). HIV-1 selection by epidermal dendritic cells during transmission across human skin. Journal of Experimental Medicine 187, 1623-1631.[CrossRef]
    [Google Scholar]
  149. Reeves, J. D., McKnight, A., Potempa, S., Simmons, G., Gray, P. W., Power, C. A., Wells, T., Weiss, R. A. & Talbot, S. J. ( 1997; ). CD4-independent infection by HIV-2 (ROD/B): use of the 7-transmembrane receptors CXCR-4, CCR-3, and V28 for entry. Virology 231, 130-134.[CrossRef]
    [Google Scholar]
  150. Reeves, J. D., Hibbitts, S., Simmons, G., McKnight, A., Azevedo-Pereira, J. M., Moniz-Pereira, J. & Clapham, P. R. ( 1999; ). Primary human immunodeficiency virus type 2 (HIV-2) isolates infect CD4-negative cells via CCR5 and CXCR4: comparison with HIV-1 and simian immunodeficiency virus and relevance to cell tropism in vivo. Journal of Virology 73, 7795-7804.
    [Google Scholar]
  151. Rojo, D., Suetomi, K. & Navarro, J. ( 1999; ). Structural biology of chemokine receptors. Biological Research 32, 263-272.
    [Google Scholar]
  152. Ross, T. M. & Cullen, B. R. ( 1998; ). The ability of HIV type 1 to use CCR-3 as a coreceptor is controlled by envelope V1/V2 sequences acting in conjunction with a CCR-5 tropic V3 loop. Proceedings of the National Academy of Sciences, USA 95, 7682-7686.[CrossRef]
    [Google Scholar]
  153. Rucker, J., Edinger, A. L., Sharron, M., Samson, M., Lee, B., Berson, J. F., Yi, Y., Margulies, B., Collman, R. G., Doranz, B. J., Parmentier, M. & Doms, R. W. ( 1997; ). Utilization of chemokine receptors, orphan receptors, and herpesvirus-encoded receptors by diverse human and simian immunodeficiency viruses. Journal of Virology 71, 8999-9007.
    [Google Scholar]
  154. Saha, K., Bentsman, G., Chess, L. & Volsky, D. J. ( 1998; ). Endogenous production of β-chemokines by CD4+, but not CD8+, T-cell clones correlates with the clinical state of human immunodeficiency virus type 1 (HIV-1)-infected individuals and may be responsible for blocking infection with non-syncytium-inducing HIV-1 in vitro. Journal of Virology 72, 876-881.
    [Google Scholar]
  155. Saito, Y., Sharer, L. R., Epstein, L. G., Michaels, J., Mintz, M., Louder, M., Golding, K., Cvetkovich, T. A. & Blumberg, B. M. ( 1994; ). Overexpression of nef as a marker for restricted HIV-1 infection of astrocytes in postmortem pediatric central nervous tissues. Neurology 44, 474-481.[CrossRef]
    [Google Scholar]
  156. Salzwedel, K. & Berger, E. A. ( 2000; ). Cooperative subunit interactions within the oligomeric envelope glycoprotein of HIV-1: functional complementation of specific defects in gp120 and gp41. Proceedings of the National Academy of Sciences, USA 97, 12794-12799.[CrossRef]
    [Google Scholar]
  157. Samson, M., Edinger, A. L., Stordeur, P., Rucker, J., Verhasselt, V., Sharron, M., Govaerts, C., Mollereau, C., Vassart, G., Doms, R. W. & Parmentier, M. ( 1998; ). ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. European Journal of Immunology 28, 1689-1700.[CrossRef]
    [Google Scholar]
  158. Sattentau, Q. J., Clapham, P. R., Weiss, R. A., Beverley, P. C., Montagnier, L., Alhalabi, M. F., Gluckmann, J. C. & Klatzmann, D. ( 1988; ). The human and simian immunodeficiency viruses HIV-1, HIV-2 and SIV interact with similar epitopes on their cellular receptor, the CD4 molecule. AIDS 2, 101-105.[CrossRef]
    [Google Scholar]
  159. Scala, E., D′Offizi, G., Rosso, R., Turriziani, O., Ferrara, R., Mazzone, A. M., Antonelli, G., Aiuti, F. & Paganelli, R. ( 1997; ). C-C chemokines, IL-16, and soluble antiviral factor activity are increased in cloned T cells from subjects with long-term nonprogressive HIV infection. Journal of Immunology 158, 4485-4492.
    [Google Scholar]
  160. Scarlatti, G., Tresoldi, E., Bjorndal, A., Fredriksson, R., Colognesi, C., Deng, H. K., Malnati, M. S., Plebani, A., Siccardi, A. G., Littman, D. R., Fenyo, E. M. & Lusso, P. ( 1997; ). In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression. Nature Medicine 3, 1259-1265.[CrossRef]
    [Google Scholar]
  161. Schnittman, S. M., Psallidopoulos, M. C., Lane, H. C., Thompson, L., Baseler, M., Massari, F., Fox, C. H., Salzman, N. P. & Fauci, A. S. ( 1989; ). The reservoir for HIV-1 in human peripheral blood is a T cell that maintains expression of CD4. Science 245, 305-308.[CrossRef]
    [Google Scholar]
  162. Schols, D. & De Clercq, E. ( 1998; ). The simian immunodeficiency virus mnd(GB-1) strain uses CXCR4, not CCR5, as coreceptor for entry in human cells. Journal of General Virology 79, 2203-2205.
    [Google Scholar]
  163. Schooley, R. T., Merigan, T. C., Gaut, P., Hirsch, M. S., Holodniy, M., Flynn, T., Liu, S., Byington, R. E., Henochowicz, S., Gubish, E. and others ( 1990; ). Recombinant soluble CD4 therapy in patients with the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. A phase I–II escalating dosage trial. Annals of Internal Medicine 112, 247–253.[CrossRef]
    [Google Scholar]
  164. Seddiki, N., Ramdani, A., Saffar, L., Portoukalian, J., Gluckman, J. C. & Gattegno, L. ( 1994; ). A monoclonal antibody directed to sulfatide inhibits the binding of human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein to macrophages but not their infection by the virus. Biochimica et Biophysica Acta 1225, 289-296.[CrossRef]
    [Google Scholar]
  165. Shankarappa, R., Margolick, J. B., Gange, S. J., Rodrigo, A. G., Upchurch, D., Farzadegan, H., Gupta, P., Rinaldo, C. R., Learn, G. H., He, X., Huang, X. L. & Mullins, J. I. ( 1999; ). Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. Journal of Virology 73, 10489-10502.
    [Google Scholar]
  166. Sharron, M., Pohlmann, S., Price, K., Lolis, E., Tsang, M., Kirchhoff, F., Doms, R. W. & Lee, B. ( 2000; ). Expression and coreceptor activity of STRL33/Bonzo on primary peripheral blood lymphocytes. Blood 96, 41-49.
    [Google Scholar]
  167. Shaunak, S., Thornton, M., John, S., Teo, I., Peers, E., Mason, P., Krausz, T. & Davies, D. S. ( 1998; ). Reduction of the viral load of HIV-1 after the intraperitoneal administration of dextrin 2-sulphate in patients with AIDS. AIDS 12, 399-409.[CrossRef]
    [Google Scholar]
  168. Shieh, J. T., Albright, A. V., Sharron, M., Gartner, S., Strizki, J., Doms, R. W. & Gonzalez Scarano, F. ( 1998; ). Chemokine receptor utilization by human immunodeficiency virus type 1 isolates that replicate in microglia. Journal of Virology 72, 4243-4249.
    [Google Scholar]
  169. Shieh, J. T., Martin, J., Baltuch, G., Malim, M. H. & Gonzalez-Scarano, F. ( 2000; ). Determinants of syncytium formation in microglia by human immunodeficiency virus type 1: role of the V1/V2 domains. Journal of Virology 74, 693-701.[CrossRef]
    [Google Scholar]
  170. Shimizu, N., Soda, Y., Kanbe, K., Liu, H. Y., Mukai, R., Kitamura, T. & Hoshino, H. ( 2000; ). A putative G protein-coupled receptor, RDC1, is a novel coreceptor for human and simian immunodeficiency viruses. Journal of Virology 74, 619-626.[CrossRef]
    [Google Scholar]
  171. Simmons, G., Wilkinson, D., Reeves, J. D., Dittmar, M. T., Beddows, S., Weber, J., Carnegie, G., Desselberger, U., Gray, P. W., Weiss, R. A. & Clapham, P. R. ( 1996; ). Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. Journal of Virology 70, 8355-8360.
    [Google Scholar]
  172. Simmons, G., Clapham, P. R., Picard, L., Offord, R. E., Rosenkilde, M. M., Schwartz, T. W., Buser, R., Wells, T. N. C. & Proudfoot, A. E. ( 1997; ). Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 276, 276-279.[CrossRef]
    [Google Scholar]
  173. Simmons, G., Reeves, J. D., Hibbitts, S., Stine, J. T., Gray, P. W., Proudfoot, A. E. & Clapham, P. R. ( 2000; ). Co-receptor use by HIV and inhibition of HIV infection by chemokine receptor ligands. Immunological Reviews 177, 112-126.[CrossRef]
    [Google Scholar]
  174. Skehel, J. J., Bizebard, T., Bullough, P. A., Hughson, F. M., Knossow, M., Steinhauer, D. A., Wharton, S. A. & Wiley, D. C. ( 1995; ). Membrane fusion by influenza hemagglutinin. Cold Spring Harbor Symposia on Quantitative Biology 60, 573-580.[CrossRef]
    [Google Scholar]
  175. Smith, M. W., Dean, M., Carrington, M., Winkler, C., Huttley, G. A., Lomb, D. A., Goedert, J. J., O′Brien, T. R., Jacobson, L. P., Kaslow, R., Buchbinder, S., Vittinghoff, E., Vlahov, D., Hoots, K., Hilgartner, M. W. & O’Brien, S. J. ( 1997; ). Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study. Science 277, 959-965.[CrossRef]
    [Google Scholar]
  176. Sol, N., Ferchal, F., Braun, J., Pleskoff, O., Treboute, C., Ansart, I. & Alizon, M. ( 1997; ). Usage of the coreceptors CCR-5, CCR-3, and CXCR-4 by primary and cell line-adapted human immunodeficiency virus type 2. Journal of Virology 71, 8237-8244.
    [Google Scholar]
  177. Sommerfelt, M. A. ( 1999; ). Retrovirus receptors. Journal of General Virology 80, 3049-3064.
    [Google Scholar]
  178. Strizki, J. M., Xu, S., Wagner, N. E., Wojcik, L., Liu, J., Hou, Y., Endres, M., Palani, A., Shapiro, S., Clader, J. W., Greenlee, W. J., Tagat, J. R., McCombie, S., Cox, K., Fawzi, A. B., Chou, C. C., Pugliese-Sivo, C., Davies, L., Moreno, M. E., Ho, D. D., Trkola, A., Stoddart, C. A., Moore, J. P., Reyes, G. R. & Baroudy, B. M. ( 2001; ). SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo. Proceedings of the National Academy of Sciences, USA 98, 12718-12723.[CrossRef]
    [Google Scholar]
  179. Tersmette, M., de Goede, R. E., Al, B. J., Winkel, I. N., Gruters, R. A., Cuypers, H. T., Huisman, H. G. & Miedema, F. ( 1988; ). Differential syncytium-inducing capacity of human immunodeficiency virus isolates: frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. Journal of Virology 62, 2026-2032.
    [Google Scholar]
  180. Trkola, A., Dragic, T., Arthos, J., Binley, J. M., Olson, W. C., Allaway, G. P., Cheng Mayer, C., Robinson, J., Maddon, P. J. & Moore, J. P. ( 1996; ). CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 384, 184-187.[CrossRef]
    [Google Scholar]
  181. Truong, M. J., Darcissac, E. C., Hermann, E., Dewulf, J., Capron, A. & Bahr, G. M. ( 1999; ). Interleukin-16 inhibits human immunodeficiency virus type 1 entry and replication in macrophages and in dendritic cells. Journal of Virology 73, 7008-7013.
    [Google Scholar]
  182. Tscherning, C., Alaeus, A., Fredriksson, R., Bjorndal, A., Deng, H., Littman, D. R., Fenyo, E. M. & Albert, J. ( 1998; ). Differences in chemokine coreceptor usage between genetic subtypes of HIV-1. Virology 241, 181-188.[CrossRef]
    [Google Scholar]
  183. Valentin, A., Albert, J., Fenyo, E. M. & Asjo, B. ( 1994; ). Dual tropism for macrophages and lymphocytes is a common feature of primary human immunodeficiency virus type 1 and 2 isolates. Journal of Virology 68, 6684-6689.
    [Google Scholar]
  184. Valentin, A., Lu, W., Rosati, M., Schneider, R., Albert, J., Karlsson, A. & Pavlakis, G. N. ( 1998; ). Dual effect of interleukin 4 on HIV-1 expression: implications for viral phenotypic switch and disease progression. Proceedings of the National Academy of Sciences, USA 95, 8886-8891.[CrossRef]
    [Google Scholar]
  185. van Rij, R. P., Broersen, S., Goudsmit, J., Coutinho, R. A. & Schuitemaker, H. ( 1998; ). The role of a stromal cell-derived factor-1 chemokine gene variant in the clinical course of HIV-1 infection. AIDS 12, F85-F90.[CrossRef]
    [Google Scholar]
  186. Viglianti, G. A., Parada, N. A., Maciaszek, J. W., Kornfeld, H., Center, D. M. & Cruikshank, W. W. ( 1997; ). IL-16 anti-HIV-1 therapy. Nature Medicine 3, 938.[CrossRef]
    [Google Scholar]
  187. Vignali, D. A., Carson, R. T., Chang, B., Mittler, R. S. & Strominger, J. L. ( 1996; ). The two membrane proximal domains of CD4 interact with the T cell receptor. Journal of Experimental Medicine 183, 2097-2107.[CrossRef]
    [Google Scholar]
  188. Vyakarnam, A., Eyeson, J., Teo, I., Zuckerman, M., Babaahmady, K., Schuitemaker, H., Shaunak, S., Rostron, T., Rowland-Jones, S., Simmons, G. & Clapham, P. ( 2001; ). Evidence for a post-entry barrier to R5 HIV-1 infection of CD4 memory T cells. AIDS 15, 1613-1626.[CrossRef]
    [Google Scholar]
  189. Wang, Z. X., Berson, J. F., Zhang, T. Y., Cen, Y. H., Sun, Y., Sharron, M., Lu, Z. H. & Peiper, S. C. ( 1998; ). CXCR4 sequences involved in coreceptor determination of human immunodeficiency virus type-1 tropism. Unmasking of activity with M-tropic Env glycoproteins. Journal of Biological Chemistry 273, 15007-15015.[CrossRef]
    [Google Scholar]
  190. Weiss, R. A., Clapham, P., Nagy, K. & Hoshino, H. ( 1985; ). Envelope properties of human T-cell leukemia viruses. Current Topics in Microbiology and Immunology 115, 235-246.
    [Google Scholar]
  191. Weiss, C. D., Levy, J. A. & White, J. M. ( 1990; ). Oligomeric organization of gp120 on infectious human immunodeficiency virus type 1 particles. Journal of Virology 64, 5674-5677.
    [Google Scholar]
  192. Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J. & Wiley, D. C. ( 1997; ). Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426-430.[CrossRef]
    [Google Scholar]
  193. Weissman, D., Rabin, R. L., Arthos, J., Rubbert, A., Dybul, M., Swofford, R., Venkatesan, S., Farber, J. M. & Fauci, A. S. ( 1997; ). Macrophage-tropic HIV and SIV envelope proteins induce a signal through the CCR5 chemokine receptor. Nature 389, 981-985.[CrossRef]
    [Google Scholar]
  194. Westervelt, P., Gendelman, H. E. & Ratner, L. ( 1991; ). Identification of a determinant within the human immunodeficiency virus 1 surface envelope glycoprotein critical for productive infection of primary monocytes. Proceedings of the National Academy of Sciences, USA 88, 3097-3101.[CrossRef]
    [Google Scholar]
  195. Wilkinson, D. A., Operskalski, E. A., Busch, M. P., Mosley, J. W. & Koup, R. A. ( 1998; ). A 32-bp deletion within the CCR5 locus protects against transmission of parenterally acquired human immunodeficiency virus but does not affect progression to AIDS-defining illness. Journal of Infectious Diseases 178, 1163-1166.[CrossRef]
    [Google Scholar]
  196. Winkler, C., Modi, W., Smith, M. W., Nelson, G. W., Wu, X., Carrington, M., Dean, M., Honjo, T., Tashiro, K., Yabe, D., Buchbinder, S., Vittinghoff, E., Goedert, J. J., O′Brien, T. R., Jacobson, L. P., Detels, R., Donfield, S., Willoughby, A., Gomperts, E., Vlahov, D., Phair, J. & O′Brien, S. J. ( 1998; ). Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE Study, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC). Science 279, 389-393.[CrossRef]
    [Google Scholar]
  197. Wu, L., Gerard, N. P., Wyatt, R., Choe, H., Parolin, C., Ruffing, N., Borsetti, A., Cardoso, A. A., Desjardin, E., Newman, W., Gerard, C. & Sodroski, J. ( 1996; ). CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 384, 179-183.[CrossRef]
    [Google Scholar]
  198. Wu, L., LaRosa, G., Kassam, N., Gordon, C. J., Heath, H., Ruffing, N., Chen, H., Humblias, J., Samson, M., Parmentier, M., Moore, J. P. & Mackay, C. R. ( 1997a; ). Interaction of chemokine receptor CCR5 with its ligands: multiple domains for HIV-1 gp120 binding and a single domain for chemokine binding. Journal of Experimental Medicine 186, 1373-1381.[CrossRef]
    [Google Scholar]
  199. Wu, L., Paxton, W. A., Kassam, N., Ruffing, N., Rottman, J. B., Sullivan, N., Choe, H., Sodroski, J., Newman, W., Koup, R. A. & Mackay, C. R. ( 1997b; ). CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. Journal of Experimental Medicine 185, 1681-1691.[CrossRef]
    [Google Scholar]
  200. Xiao, X., Wu, L., Stantchev, T. S., Feng, Y. R., Ugolini, S., Chen, H., Shen, Z., Riley, J. L., Broder, C. C., Sattentau, Q. J. & Dimitrov, D. S. ( 1999; ). Constitutive cell surface association between CD4 and CCR5. Proceedings of the National Academy of Sciences, USA 96, 7496-7501.[CrossRef]
    [Google Scholar]
  201. Yachou, A. & Sekaly, R. P. ( 1999; ). Binding of soluble recombinant HIV envelope glycoprotein, rgp120, induces conformational changes in the cellular membrane-anchored CD4 molecule. Biochemical and Biophysical Research Communications 265, 428-433.[CrossRef]
    [Google Scholar]
  202. Yasukawa, M., Inoue, Y., Ohminami, H., Sada, E., Miyake, K., Tohyama, T., Shimada, T. & Fujita, S. ( 1997; ). Human herpesvirus 7 infection of lymphoid and myeloid cell lines transduced with an adenovirus vector containing the CD4 gene. Journal of Virology 71, 1708-1712.
    [Google Scholar]
  203. Yasukawa, M., Hasegawa, A., Sakai, I., Ohminami, H., Arai, J., Kaneko, S., Yakushijin, Y., Maeyama, K., Nakashima, H., Arakaki, R. & Fujita, S. ( 1999; ). Down-regulation of CXCR4 by human herpesvirus 6 (HHV-6) and HHV-7. Journal of Immunology 162, 5417-5422.
    [Google Scholar]
  204. Zaitseva, M., Blauvelt, A., Lee, S., Lapham, C. K., Klaus-Kovtun, V., Mostowski, H., Manischewitz, J. & Golding, H. ( 1997; ). Expression and function of CCR5 and CXCR4 on human Langerhans’ cells and macrophages: implications for HIV primary infection. Nature Medicine 3, 1369-1375.[CrossRef]
    [Google Scholar]
  205. Zhang, Y. J. & Moore, J. P. ( 1999; ). Will multiple coreceptors need to be targeted by inhibitors of human immunodeficiency virus type 1 entry? Journal of Virology 73, 3443-3448.
    [Google Scholar]
  206. Zhang, Y., Lou, B., Lal, R. B., Gettie, A., Marx, P. A. & Moore, J. P. ( 2000; ). The use of inhibitors to evaluate co-receptor usage by simian and simian/human immunodeficiency viruses and human immunodeficiency virus type 2 in primary cells. Journal of Virology 74, 6893-6910.[CrossRef]
    [Google Scholar]
  207. Zhou, P., Goldstein, S., Devadas, K., Tewari, D. & Notkins, A. L. ( 1997; ). Human CD4+ cells transfected with IL-16 cDNA are resistant to HIV-1 infection: inhibition of mRNA expression. Nature Medicine 3, 659-664.[CrossRef]
    [Google Scholar]
  208. Zhou, G., Ferrer, M., Chopra, R., Kapoor, T. M., Strassmaier, T., Weissenhorn, W., Skehel, J. J., Oprian, D., Schreiber, S. L., Harrison, S. C. & Wiley, D. C. ( 2000; ). The structure of an HIV-1 specific cell entry inhibitor in complex with the HIV-1 gp41 trimeric core. Bioorganic and Medicinal Chemistry Letters 8, 2219-2227.[CrossRef]
    [Google Scholar]
  209. Zink, M. C., Spelman, J. P., Robinson, R. B. & Clements, J. E. ( 1998; ). SIV infection of macaques: modeling the progression to AIDS dementia. Journal of Neurovirology 4, 249-259.[CrossRef]
    [Google Scholar]
  210. Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I. & Littman, D. R. ( 1998; ). Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595-599.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-8-1809
Loading
/content/journal/jgv/10.1099/0022-1317-83-8-1809
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error