1887

Abstract

Non-neuroadapted influenza virus confined to the brain parenchyma does not induce antigen-specific immunity. Nevertheless, infection in this site upregulated major histocompatibility complex (MHC) class I and MHC class II expression and recruited lymphocytes to a perivascular compartment. T cells recovered from the brain had an activated/memory phenotype but did not respond to viral antigens. In contrast, T cells recovered from the brain after infection in a lateral cerebral ventricle, which is immunogenic, showed virus-specific responses. As with infectious virus, influenza virus-infected dendritic cells elicited virus-specific immunity when inoculated into the cerebrospinal fluid but not when inoculated into the brain parenchyma. Thus, inflammation and dendritic cell function were both uncoupled from immune priming in the microenvironment of the brain parenchyma and neither was sufficient to overcome immunological privilege.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-7-1735
2002-07-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/7/0831735a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-7-1735&mimeType=html&fmt=ahah

References

  1. Aloisi, F., Ria, F., Columba-Cabezas, S., Hess, H., Penna, G. & Adorini, L. ( 1999; ). Relative efficiency of microglia, astrocytes, dendritic cells and B cells in naive CD4+ T cell priming and Th1/Th2 cell restimulation. European Journal of Immunology 29, 2705-2714.[CrossRef]
    [Google Scholar]
  2. Austyn, J. M., Steinman, R. M., Weinstein, D. E., Granelli-Piperno, A. & Palladino, M. A. ( 1983; ). Dendritic cells initiate a two-stage mechanism for T lymphocyte proliferation. Journal of Experimental Medicine 157, 1101-1115.[CrossRef]
    [Google Scholar]
  3. Brent, L. ( 1990; ). Immunologically privileged sites. In Pathophysiology of the Blood–Brain Barrier , pp. 383-402. Edited by B. B. Johansson, C. Owman & H. Widner. Oxford:Elsevier.
  4. Carson, M. J., Reilly, C. R., Sutcliffe, J. G. & Lo, D. ( 1998; ). Mature microglia resemble immature antigen-presenting cells. Glia 22, 72-85.[CrossRef]
    [Google Scholar]
  5. Carson, M. J., Reilly, C. R., Sutcliffe, J. G. & Lo, D. ( 1999; ). Disproportionate recruitment of CD8+ T cells into the central nervous system by professional antigen-presenting cells. American Journal of Pathology 154, 481-494.[CrossRef]
    [Google Scholar]
  6. Cserr, H. F. & Knopf, P. M. ( 1992; ). Cervical lymphatics, the blood–brain barrier and the immunoreactivity of the brain: a new view. Immunology Today 13, 507-512.[CrossRef]
    [Google Scholar]
  7. Fischer, H. G. & Reichmann, G. ( 2001; ). Brain dendritic cells and macrophages/microglia in central nervous system inflammation. Journal of Immunology 166, 2717-2726.[CrossRef]
    [Google Scholar]
  8. Fischer, H. G., Bonifas, U. & Reichmann, G. ( 2000; ). Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. Journal of Immunology 164, 4826-4834.[CrossRef]
    [Google Scholar]
  9. Ford, A. L., Foulcher, E., Lemckert, F. A. & Sedgwick, J. D. ( 1996; ). Microglia induce CD4 T lymphocyte final effector function and death. Journal of Experimental Medicine 184, 1737-1745.[CrossRef]
    [Google Scholar]
  10. Gold, R., Hartung, H.-P. & Lassmann, H. ( 1997; ). T cell apoptosis in autoimmune diseases: termination of inflammation in the nervous system and other sites with specialized immune-defense mechanisms. Trends in Neurosciences 20, 399-404.[CrossRef]
    [Google Scholar]
  11. Gordon, L. B., Knopf, P. M. & Cserr, H. F. ( 1992; ). Ovalbumin is more immunogenic when introduced into brain or cerebrospinal fluid than into extracerebral sites. Journal of Neuroimmunology 40, 81-87.[CrossRef]
    [Google Scholar]
  12. Hamilton-Easton, A. & Eichelberger, M. ( 1995; ). Virus-specific antigen presentation by different subsets of cells from lung and mediastinal lymph node tissues of influenza virus-infected mice. Journal of Virology 69, 6359-6366.
    [Google Scholar]
  13. Hart, D. N. & Fabre, J. W. ( 1981; ). Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain. Journal of Experimental Medicine 154, 347-361.[CrossRef]
    [Google Scholar]
  14. Hawke, S., Stevenson, P. G., Freeman, S. & Bangham, C. R. ( 1998; ). Long-term persistence of activated cytotoxic T lymphocytes after viral infection of the central nervous system. Journal of Experimental Medicine 187, 1575-1582.[CrossRef]
    [Google Scholar]
  15. Hickey, W. F. & Kimura, H. ( 1988; ). Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239, 290-292.[CrossRef]
    [Google Scholar]
  16. Irani, D. N., Lin, K.-I. & Griffin, D. E. ( 1996; ). Brain-derived gangliosides regulate the cytokine production and proliferation of activated T cells. Journal of Immunology 157, 4333-4340.
    [Google Scholar]
  17. Kupiec-Weglinski, J. W., Austyn, J. M. & Morris, P. J. ( 1988; ). Migration patterns of dendritic cells in the mouse. Traffic from the blood, and T cell-dependent and -independent entry to lymphoid tissues. Journal of Experimental Medicine 167, 632-645.[CrossRef]
    [Google Scholar]
  18. Lopez, C. B., Fernandez-Sesma, A., Czelusniak, S. M., Schulman, J. L. & Moran, T. M. ( 2000; ). A mouse model for immunization with ex vivo virus-infected dendritic cells. Cellular Immunology 206, 107-115.[CrossRef]
    [Google Scholar]
  19. Macatonia, S. E., Taylor, P. M., Knight, S. C. & Askonas, B. A. ( 1989; ). Primary stimulation by dendritic cells induces antiviral proliferative and cytotoxic T cell responses in vitro. Journal of Experimental Medicine 169, 1255-1264.[CrossRef]
    [Google Scholar]
  20. Matyszak, M. K. & Perry, V. H. ( 1998; ). Bacillus Calmette-Guerin sequestered in the brain parenchyma escapes immune recognition. Journal of Neuroimmunology 82, 73-80.[CrossRef]
    [Google Scholar]
  21. Medawar, P. B. ( 1948; ). Immunity to homologous grafted skin. III. The fate of skin homografts transplanted to the brain, to subcutaneous tissue and to the anterior chamber of the eye. British Journal of Experimental Pathology 29, 58-69.
    [Google Scholar]
  22. Mellman, I. & Steinman, R. M. ( 2001; ). Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255-258.[CrossRef]
    [Google Scholar]
  23. Mims, C. A. (1982). The Pathogenesis of Infectious Disease, pp. 109–134. London: Academic Press.
  24. Nonacs, R., Humborg, C., Tam, J. P. & Steinman, R. M. ( 1992; ). Mechanisms of mouse spleen dendritic cell function in the generation of influenza-specific, cytolytic T lymphocytes. Journal of Experimental Medicine 176, 519-529.[CrossRef]
    [Google Scholar]
  25. Reinacher, M., Bonin, J., Narayan, O. & Scholtissek, C. ( 1983; ). Pathogenesis of neurovirulent influenza A virus infection in mice. Route of entry of virus into brain determines infection of different populations of cells. Laboratory Investigation 49, 686-692.
    [Google Scholar]
  26. Santambrogio, L., Belyanskaya, S. L., Fischer, F. R., Cipriani, B., Brosnan, C. F., Ricciardi-Castagnoli, P., Stern, L. J., Strominger, J. L. & Riese, R. ( 2001; ). Developmental plasticity of CNS microglia. Proceedings of the National Academy of Sciences, USA 98, 6295-6300.[CrossRef]
    [Google Scholar]
  27. Schlesinger, R. W. ( 1950; ). Incomplete growth cycle of influenza virus in mouse brain. Proceedings of the Society for Experimental Biology and Medicine 74, 541-548.[CrossRef]
    [Google Scholar]
  28. Serafini, B., Columba-Cabezas, S., Di Rosa, F. & Aloisi, F. ( 2000; ). Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. American Journal of Pathology 157, 1991-2002.[CrossRef]
    [Google Scholar]
  29. Steinman, R. M. ( 1991; ). The dendritic cell system and its role in immunogenicity. Annual Review of Immunology 9, 271-296.[CrossRef]
    [Google Scholar]
  30. Stevenson, P. G., Hawke, S., Sloan, D. J. & Bangham, C. R. M. ( 1997a; ). The immunogenicity of intracerebral virus infection depends on anatomical site. Journal of Virology 71, 145-151.
    [Google Scholar]
  31. Stevenson, P. G., Freeman, S., Bangham, C. R. M. & Hawke, S. ( 1997b; ). Virus dissemination through the brain parenchyma without immunologic control. Journal of Immunology 159, 1876-1884.
    [Google Scholar]
  32. Stevenson, P. G., Bangham, C. R. M. & Hawke, S. ( 1997c; ). Recruitment, activation and proliferation of CD8+ memory T cells in an immunoprivileged site. European Journal of Immunology 27, 3259-3268.[CrossRef]
    [Google Scholar]
  33. Streilein, J. W. ( 1993; ). Immune privilege as the result of local tissue barriers and immunosuppressive microenvironments. Current Opinion in Immunology 5, 428-432.[CrossRef]
    [Google Scholar]
  34. Stuart-Harris, C. H. (1939). A neurotropic strain of human influenza virus. Lancet i, 497–499.
  35. Takahashi, M., Yamada, T., Nakajima, S., Nakajima, K., Yamamoto, T. & Okada, H. ( 1995; ). The substantia nigra is a major target for neurovirulent influenza A virus. Journal of Experimental Medicine 181, 2161-2169.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-7-1735
Loading
/content/journal/jgv/10.1099/0022-1317-83-7-1735
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error