1887

Abstract

We constructed a poliovirus receptor (PVR) transgenic mouse line carrying a PVRδ cDNA driven by a β-actin promoter. We refer to this model as the cPVR mouse. The cPVR mice express Pvr in a variety of tissues (including small intestines, brain, spinal cord, muscle, blood and liver) and are susceptible to infection after intraperitoneal, intracerebral or intramuscular inoculation of poliovirus. After intraperitoneal inoculation, poliovirus replication is observed in cPVR muscle, brain, spinal cord and, notably, small intestine. The cPVR mice exhibit a striking age-dependent paralysis after intramuscular infection, with 2-week-old mice being 10000-fold more susceptible to paralytic disease than adult mice. The cPVR mice are also susceptible to paralysis following intranasal infection with poliovirus. After intranasal infection, virus replication is observed in the olfactory bulb, cerebrum, brain stem and spinal cord, suggesting that intranasal infection of cPVR mice is a model for bulbar paralysis. Intranasally infected mice frequently display unusual neurological behaviours. The PVR transgenic mouse reported here provides the first available model for a mucosal route of infection with poliovirus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-7-1707
2002-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/7/0831707a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-7-1707&mimeType=html&fmt=ahah

References

  1. Andino R., Boddeker N., Silvera D., Gamarnik A. V. 1999; Intracellular determinants of picornavirus replication. Trends in Microbiology 7:76–82
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., K. Struhl K. (editors) 1995 Current Protocols in Molecular Biology New York: Greene Publishing Associates/Wiley–Interscience;
    [Google Scholar]
  3. Bieniasz P. D., Cullen B. R. 2000; Multiple blocks to human immunodeficiency virus type 1 replication in rodent cells. Journal of Virology 74:9868–9877
    [Google Scholar]
  4. Bieniasz P. D., Grdina T. A., Bogerd H. P., Cullen B. R. 1998; Recruitment of a protein complex containing Tat and cyclin T1 to TAR governs the species specificity of HIV-1 Tat. EMBO Journal 17:7056–7065
    [Google Scholar]
  5. Blixenkrone-Moller M., Bernard A., Bencsik A., Sixt N., Diamond L. E., Logan J. S., Wild T. F. 1998; Role of CD46 in measles virus infection in CD46 transgenic mice. Virology 249:238–248
    [Google Scholar]
  6. Bodian D. 1955; Emerging concept of poliomyelitis infection. Science 122:105–108
    [Google Scholar]
  7. Brinster R. L., Chen H. Y., Trumbauer M. E., Yagle M. K., Palmiter R. D. 1985; Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proceedings of the National Academy of Sciences, USA 82:4438–4442
    [Google Scholar]
  8. Browning J., Horner J. W., Pettoello-Mantovani M., Raker C., Yurasov S., DePinho R. A., Goldstein H. 1997; Mice transgenic for human CD4 and CCR5 are susceptible to HIV infection. Proceedings of the National Academy of Sciences, USA 94:14637–14641
    [Google Scholar]
  9. Choe H., Farzan M., Sun Y., Sullivan N., Rollins B., Ponath P. D., Wu L., Mackay C. R., LaRosa G., Newman W., Gerard N., Gerard C., Sodroski J. 1996; The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85:1135–1148
    [Google Scholar]
  10. Crotty S., Lohman B. L., Lu F. X., Tang S., Miller C. J., Andino R. 1999; Mucosal immunization of cynomolgus macaques with two serotypes of live poliovirus vectors expressing simian immunodeficiency virus antigens: stimulation of humoral, mucosal, and cellular immunity. Journal of Virology 73:9485–9495
    [Google Scholar]
  11. Crotty S., Miller C. J., Lohman B. L., Neagu M. R., Compton L., Lu D., Lu F. X., Fritts L., Lifson J. D., Andino R. 2001; Protection against simian immunodeficiency virus vaginal challenge by using Sabin poliovirus vectors. Journal of Virology 75:7435–7452
    [Google Scholar]
  12. Dalgleish A. G., Beverley P. C., Clapham P. R., Crawford D. H., Greaves M. F., Weiss R. A. 1984; The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763–767
    [Google Scholar]
  13. Deatly A. M., Taffs R. E., McAuliffe J. M., Nawoschik S. P., Coleman J. W., McMullen G., Weeks-Levy C., Johnson A. J., Racaniello V. R. 1998; Characterization of mouse lines transgenic with the human poliovirus receptor gene. Microbial Pathogenesis 25:43–54
    [Google Scholar]
  14. Faber H. K. 1955; The pathogenesis of poliomyelitis. In American Lectures in Pediatrics pp 157 Edited by Anderson J. Springfield, IL: Charles C. Thomas;
    [Google Scholar]
  15. Feng Y., Broder C. C., Kennedy P. E., Berger E. A. 1996; HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–887
    [Google Scholar]
  16. Gamarnik A. V., Andino R. 1996; Replication of poliovirus in Xenopus oocytes requires two human factors. EMBO Journal 15:5988–5998
    [Google Scholar]
  17. Garber M. E., Wei P., KewalRamani V. N., Mayall T. P., Herrmann C. H., Rice A. P., Littman D. R., Jones K. A. 1998; The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes & Development 12:3512–3527
    [Google Scholar]
  18. Gohara D. W., Crotty S., Arnold J. J., Yoder J. D., Andino R., Cameron C. E. 2000; Poliovirus RNA-dependent RNA polymerase (3Dpol): structural, biochemical, and biological analysis of conserved structural motifs A and B. Journal of Biological Chemistry 275:25523–25532
    [Google Scholar]
  19. Hanna Z., Kay D. G., Rebai N., Guimond A., Jothy S., Jolicoeur P. 1998; Nef harbors a major determinant of pathogenicity for an AIDS-like disease induced by HIV-1 in transgenic mice. Cell 95:163–175
    [Google Scholar]
  20. Herold J., Andino R. 2000; Poliovirus requires a precise 5′ end for efficient positive-strand RNA synthesis. Journal of Virology 74:6394–6400
    [Google Scholar]
  21. Herold J., Andino R. 2001; Poliovirus RNA replication requires genome circularization through a protein–protein bridge. Molecular Cell 7:581–591
    [Google Scholar]
  22. Horvat B., Rivailler P., Varior-Krishnan G., Cardoso A., Gerlier D., Rarourdin-Combe C. 1996; Transgenic mice expressing human measles virus (MV) receptor CD46 provide cells exhibiting different permissivities to MV infections. Journal of Virology 70:6673–6681
    [Google Scholar]
  23. Jamieson B. D., Zack J. A. 1999; Murine models for HIV disease. AIDS 13:S5–11
    [Google Scholar]
  24. Klatzmann D., Champagne E., Chamaret S., Gruest J., Guetard D., Hercend T., Gluckman J. C., Montagnier L. 1984; T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312:767–768
    [Google Scholar]
  25. Koike S., Taya C., Kurata T., Abe S., Ise I., Yonekawa H., Nomoto A. 1991; Transgenic mice susceptible to poliovirus. Proceedings of the National Academy of Sciences, USA 88:951–955
    [Google Scholar]
  26. Koike S., Horie H., Sato Y., Ise I., Taya C., Nomura T., Yoshioka I., Yonekawa H., Nomoto A. 1993; Poliovirus-sensitive transgenic mice as a new animal model. Developments in Biological Standardization 78:101–107
    [Google Scholar]
  27. McBride A. E., Schlegel A., Kirkegaard K. 1996; Human protein Sam68 relocalization and interaction with poliovirus RNA polymerase in infected cells. Proceedings of the National Academy of Sciences, USA 93:2296–2301
    [Google Scholar]
  28. McCune J. M. 1997; Animal models of HIV-1 disease. Science 278:2141–2142
    [Google Scholar]
  29. Mendelsohn C. L., Wimmer E., Racaniello V. R. 1989; Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56:855–865
    [Google Scholar]
  30. Maddon P. J., Dalgleish A. G., McDougal J. S., Clapham P. R., Weiss R. A., Axel R. 1986; The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47:333–348
    [Google Scholar]
  31. Mandl S., Sigal L. J., Rock K. L., Andino R. 1998; Poliovirus vaccine vectors elicit antigen-specific cytotoxic T cells and protect mice against lethal challenge with malignant melanoma cells expressing a model antigen. Proceedings of the National Academy of Sciences, USA 95:8216–8221
    [Google Scholar]
  32. Mandl S., Hix L., Andino R. 2001; Preexisting immunity to poliovirus does not impair the efficacy of recombinant poliovirus vaccine vectors. Journal of Virology 75:622–627
    [Google Scholar]
  33. Mrkic B., Pavlovic J., Rulicke T., Volpe P., Buchholz C. J., Hourcade D., Atkinson J. P., Aguzzi A., Cattaneo R. 1998; Measles virus spread and pathogenesis in genetically modified mice. Journal of Virology 72:7420–7427
    [Google Scholar]
  34. Nathanson N., Ahmed R. 1997 Viral Pathogenesis Philadelphia: Lippincott–Raven;
    [Google Scholar]
  35. Nomoto A., Omata T., Toyoda H., Kuge S., Horie H., Kataoka Y., Genba Y., Nakano Y., Imura N. 1982; Complete nucleotide sequence of the attenuated poliovirus Sabin 1 strain genome. Proceedings of the National Academy of Sciences, USA 79:5793–5797
    [Google Scholar]
  36. Oldstone M. B., Lewicki H., Thomas D., Tishon A., Dales S., Patterson J., Manchester M., Homann D., Naniche D., Holz A. 1999; Measles virus infection in a transgenic model: virus-induced immunosuppression and central nervous system disease. Cell 98:629–640
    [Google Scholar]
  37. Omata T., Kohara M., Sakai Y., Kameda A., Imura N., Nomoto A. 1984; Cloned infectious complementary DNA of the poliovirus Sabin 1 genome: biochemical and biological properties of the recovered virus. Gene 32:1–10
    [Google Scholar]
  38. Racaniello V. R., Baltimore D. 1981; Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 214:916–919
    [Google Scholar]
  39. Rall G. F., Manchester M., Daniels L. R., Callahan E. M., Belman A. R., Oldstone M. B. 1997; A transgenic mouse model for measles virus infection of the brain. Proceedings of the National Academy of Sciences, USA 94:4659–4663
    [Google Scholar]
  40. Ren R., Racaniello V. R. 1992a; Human poliovirus receptor gene expression and poliovirus tissue tropism in transgenic mice. Journal of Virology 66:296–304
    [Google Scholar]
  41. Ren R., Racaniello V. R. 1992b; Poliovirus spreads from muscle to the central nervous system by neural pathways. Journal of Infectious Diseases 166:747–752
    [Google Scholar]
  42. Ren R. B., Costantini F., Gorgacz E. J., Lee J. J., Racaniello V. R. 1990; Transgenic mice expressing a human poliovirus receptor: a new model for poliomyelitis. Cell 63:353–362
    [Google Scholar]
  43. Ryman K. D., Klimstra W. B., Nguyen K. B., Biron C. A., Johnston R. E. 2000; Alpha/beta interferon protects adult mice from fatal Sindbis virus infection and is an important determinant of cell and tissue tropism. Journal of Virology 74:3366–3378
    [Google Scholar]
  44. Sabin A. B. 1956; Pathogenesis of poliomyelitis. Science 123:1151–1157
    [Google Scholar]
  45. Sabin A. B. 1986; Poliomyelitis. In Infectious Diseases and Medical Microbiology. , 2nd edn. pp xxv–1620 Edited by Braude A. I., Davis C. E., Fierer J. Philadelphia: Saunders;
  46. Sigal L. J., Crotty S., Andino R., Rock K. L. 1999; Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature 398:77–80
    [Google Scholar]
  47. Speck R. F., Penn M. L., Wimmer J., Esser U., Hague B. F., Kindt T. J., Atchison R. E., Goldsmith M. A. 1998; Rabbit cells expressing human CD4 and human CCR5 are highly permissive for human immunodeficiency virus type 1 infection. Journal of Virology 72:5728–5734
    [Google Scholar]
  48. Sturm K., Lafferty M., Tam P. P. 1999; Pgk1 and Hprt gene activity in the peri-implantation mouse embryo is influenced by the parental origin of the X-chromosome. International Journal of Developmental Biology 43:69–73
    [Google Scholar]
  49. Tang S., van Rij R., Silvera D., Andino R. 1997; Toward a poliovirus-based simian immunodeficiency virus vaccine: correlation between genetic stability and immunogenicity. Journal of Virology 71:7841–7850
    [Google Scholar]
  50. Trainor P. A., Zhou S. X., Parameswaran M., Quinlan G. A., Gordon M., Sturm K., Tam P. P. 1999; Application of lacZ transgenic mice to cell lineage studies. Methods in Molecular Biology 97:183–200
    [Google Scholar]
  51. Wei P., Garber M. E., Fang S. M., Fischer W. H., Jones K. A. 1998; A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92:451–462
    [Google Scholar]
  52. WHO 1998a Forty-sixth Report World Health Organ Tech. Rep. Ser pp 1–90 WHO Expert Committee on Biological Standardization Geneva: WHO;
    [Google Scholar]
  53. WHO 1998b Update on the Global Eradication of Poliovirus Geneva: WHO;
    [Google Scholar]
  54. Zhang S., Racaniello V. R. 1997; Expression of the poliovirus receptor in intestinal epithelial cells is not sufficient to permit poliovirus replication in the mouse gut. Journal of Virology 71:4915–4920
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-7-1707
Loading
/content/journal/jgv/10.1099/0022-1317-83-7-1707
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error