1887

Abstract

In order to investigate which measles virus (MV)-strains use CD46 and/or CD150 (signalling lymphocytic activation molecule, SLAM) as receptors, CHO cells expressing either recombinant CD46 or SLAM were infected with a panel of 28 MV-strains including vaccine strains, wild-type strains with various passage histories and recombinant viruses. We found that SLAM served as a common receptor conferring virus uptake and syncytium formation for all MV-strains tested. Predominantly vaccine and laboratory adapted strains, but also a minor fraction of the wild-type strains tested, could utilize both CD46 and SLAM. Using recombinant viruses, we demonstrate that the single amino acid exchange in the haemagglutinin (H) protein at position 481 Asn/Tyr (H481NY) determines whether the virus can utilize CD46. This amino acid alteration has no affect on the usage of SLAM as receptor, and as such demonstrates that the binding sites for SLAM and CD46 are distinct.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-6-1431
2002-06-01
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/6/0831431a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-6-1431&mimeType=html&fmt=ahah

References

  1. Allen I. V., McQuaid S., McMahon J., Kirk J., McConnell R. 1996; The significance of measles virus antigen and genome distribution in the CNS in SSPE for mechanisms of viral spread and demyelination. Journal of Neuropathology & Experimental Neurology 55:471–480
    [Google Scholar]
  2. Bartz R., Brinckmann U., Dunster L. M., Rima B., ter Meulen V., Schneider-Schaulies J. 1996; Mapping amino acids of the measles virus hemagglutinin responsible for receptor (CD46) downregulation. Virology 224:334–337
    [Google Scholar]
  3. Bartz R., Firsching R., Rima B., ter Meulen V., Schneider-Schaulies J. 1998; Differential receptor usage by measles virus strains. Journal of General Virology 79:1015–1025
    [Google Scholar]
  4. Buckland R., Wild T. F. 1997; Is CD46 the cellular receptor for measles virus?. Virus Research 48:1–9
    [Google Scholar]
  5. Cocks B. G., Chang C.-C. J., Carballido J. M., Yssel H., de Vries J. E., Aversa G. 1995; A novel receptor involved in T-cell activation. Nature 376:260–263
    [Google Scholar]
  6. Dörig R. E., Marcil A., Chopra A., Richardson C. D. 1993; The human CD46 molecule is a receptor for measles virus (Edmonston strain. Cell 75:295–305
    [Google Scholar]
  7. Duprex W. P., Duffy I., McQuaid S., Hamill L., Schneider-Schaulies J., Cosby L., Billeter M., ter Meulen V., Rima B. 1999a; The H gene of rodent brain-adapted measles virus confers neurovirulence to the Edmonston vaccine strain. Journal of Virology 73:6916–6922
    [Google Scholar]
  8. Duprex W. P., McQuaid S., Hangartner L., Billeter M. A., Rima B. K. 1999b; Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. Journal of Virology 73:9568–9575
    [Google Scholar]
  9. Erlenhoefer C., Wurzer W. J., Löffler S., Schneider-Schaulies S., ter Meulen V., Schneider-Schaulies J. 2001; CD150 (SLAM) is a receptor for measles virus, but is not involved in viral contact-mediated proliferation inhibition. Journal of Virology 75:4499–4505
    [Google Scholar]
  10. Hsu E. C., Sarangi F., Iorio C., Sidhu M. S., Udem S. A., Dillehay D. L., Xu W., Rota P. A., Bellini W. J., Richardson C. D. 1998; A single amino acid change in the hemagglutinin protein of measles virus determines its ability to bind CD46 and reveals another receptor on marmoset B cells. Journal of Virology 72:2905–2916
    [Google Scholar]
  11. Hsu E. C., Iorio C., Sarangi F., Khine A. A., Richardson C. D. 2001; CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 279:9–21
    [Google Scholar]
  12. Johnston I. C. D., ter Meulen V., Schneider-Schaulies J., Schneider-Schaulies S. 1999; A recombinant measles vaccine virus expressing wild-type glycoproteins: consequences for viral spread and cell tropism. Journal of Virology 73:6903–6915
    [Google Scholar]
  13. Langedijk J. P. M., Daus F. J., van Oirschot J. T. 1997; Sequence and structure alignment of paramyxoviridae attachment proteins and discovery of enzymatic activity for a morbillivirus hemagglutinin. Journal of Virology 71:6155–6167
    [Google Scholar]
  14. Lawrence D. M. P., Patterson C. E., Gales T. L., D’Orazio J. L., Vaughn M. M., Rall G. F. 2000; Measles virus spread between neurons requires cell contact but not CD46 expression, syncytium formation, or extracellular virus production. Journal of Virology 74:1908–1918
    [Google Scholar]
  15. Lecouturier V., Fayolle J., Caballero M., Carabana J., Celma M. L., Fernandez-Munoz R., Wild T. F., Buckland R. 1996; Identification of two amino acids in the hemagglutinin glycoprotein of measles virus (MV) that govern hemadsorption, HeLa cell fusion, and CD46 downregulation: phenotypic markers that differentiate vaccine and wild-type MV strains. Journal of Virology 70:4200–4204
    [Google Scholar]
  16. McQuaid S., Campbell S., Wallace I. J., Kirk J., Cosby S. L. 1998; Measles virus infection and replication in undifferentiated and differentiated human neuronal cells in culture. Journal of Virology 72:5245–5250
    [Google Scholar]
  17. Manchester M., Eto D. S., Valsamakis A., Liton P. B., Fernandez-Munoz R., Rota P. A., Bellini W. J., Forthal D. N., Oldstone M. B. A. 2000; Clinical isolates of measles virus use CD46 as a cellular receptor. Journal of Virology 74:3967–3974
    [Google Scholar]
  18. Meissner N. N., Koschel K. 1995; Downregulation of endothelin receptor mRNA synthesis in C6 rat astrocytoma cells by persistent measles virus and canine distemper virus infections. Journal of Virology 69:5191–5194
    [Google Scholar]
  19. Minagawa H., Tanaka K., Ono N., Tatsuo H., Yanagi Y. 2001; Induction of the measles virus receptor SLAM (CD150) on monocytes. Journal of General Virology 82:2913–2917
    [Google Scholar]
  20. Naniche D., Varior-Krishnan G., Cervoni F., Wild T. F., Rossi B., Rabourdin-Combe C., Gerlier D. 1993; Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. Journal of Virology 67:6025–6032
    [Google Scholar]
  21. Ogata A., Czub S., Ogata S., Cosby S. L., McQuaid S., Budka H., ter Meulen V., Schneider-Schaulies J. 1997; Absence of measles virus receptor (CD46) in lesions of subacute sclerosing panencephalitis brains. Acta Neuropathologica 94:444–449
    [Google Scholar]
  22. Ohgimoto S., Ohgimoto K., Niewiesk S., Klagge I. M., Pfeuffer J., Johnston I. C. D., Schneider-Schaulies J., Weidmann A., ter Meulen V., Schneider-Schaulies S. 2001; The hemagglutinin protein is an important determinant for measles virus tropism for dendritic cells in vitro and immunosuppression in vivo. Journal of General Virology 82:1835–1844
    [Google Scholar]
  23. Ono N., Tatsuo H., Hidaka Y., Aoki T., Minagawa H., Yanagi Y. 2001a; Measles virus on throat swabs from measles patients use signalling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. Journal of Virology 75:4399–4401
    [Google Scholar]
  24. Ono N., Tatsuo H., Tanaka K., Minagawa H., Yanagi Y. 2001b; V domain of human SLAM (CDw150) is essential for its function as a measles virus receptor. Journal of Virology 75:1594–1600
    [Google Scholar]
  25. Polacino P. S., Pinchuk L. M., Sidorenko S. P., Clark E. A. 1996; Immunodeficiency virus cDNA synthesis in resting T lymphocytes is regulated by T cell activation signals and dendritic cells. Journal of Medical Primatology 25:201–209
    [Google Scholar]
  26. Punnonen J., Cocks B. G., Carballido J. M., Bennett B., Peterson D., Aversa G., de Vries J. 1997; Soluble and membrane-bound forms of signalling lymphocytic activation molecule (SLAM) induce proliferation and Ig synthesis by activated human B lymphocytes. Journal of Experimental Medicine 185:993–1004
    [Google Scholar]
  27. Radecke F., Spielhofer P., Schneider H., Kaelin K., Huber M., Dötsch C., Christiansen G., Billeter M. A. 1995; Rescue of measles virus from cloned DNA. EMBO Journal 14:5773–5784
    [Google Scholar]
  28. Rima B. K., Earle J. A. P., Baczko K., ter Meulen V., Carabana J., Caballero M., Celma M. L., Fernandez-Munoz R. 1997; Sequence divergence of measles virus haemagglutinin during natural evolution and adaptation to cell culture. Journal of General Virology 78:97–106
    [Google Scholar]
  29. Rota J., De Wang Z., Rota P., Bellini W. 1994; Comparison of sequences of the H, F and N coding genes of measles virus vaccine strains. Virus Research 31:317–330
    [Google Scholar]
  30. Schneider-Schaulies J., Dunster L. M., Kobune F., Rima B., ter Meulen V. 1995a; Differential downregulation of CD46 by measles virus strains. Journal of Virology 69:7257–7259
    [Google Scholar]
  31. Schneider-Schaulies J., Schnorr J. J., Brinckmann U., Dunster L. M., Baczko K., Liebert U. G., Schneider-Schaulies S., ter Meulen V. 1995b; Receptor usage and differential downregulation of CD46 by measles virus wild-type and vaccine strains. Proceedings of the National Academy of Sciences, USA 92:3943–3947
    [Google Scholar]
  32. Tanaka K., Xie M., Yanagi Y. 1998; The hemagglutinin of recent measles virus isolates induces cell fusion in a marmoset cell line, but not in other CD46-positive human and monkey cell lines, when expressed together with the F protein. Archives of Virology 143:213–225
    [Google Scholar]
  33. Tatsuo H., Ono N., Tanaka K., Yanagi Y. 2000; SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897
    [Google Scholar]
  34. Tatsuo H., Ono N., Yanagi Y. 2001; Morbilliviruses use signalling lymphocyte activation molecules (CD150) as cellular receptors. Journal of Virology 75:5842–5850
    [Google Scholar]
  35. Urbanska E. M., Chambers B. J., Ljunggren H. G., Norrby E., Kristensson K. 1997; Spread of measles virus through axonal pathways into limbic structures in the brain of Tab -/- mice. Journal of Medical Virology 52:362–369
    [Google Scholar]
  36. World Health Organization 2000a; Nomenclature for describing the generic characteristics of wild-type measles viruses (update) – Part I. Weekly Epidemiological Record 76:242–247
    [Google Scholar]
  37. World Health Organization 2000b; Nomenclature for describing the generic characteristics of wild-type measles viruses (update) – Part II. Weekly Epidemiological Record 76:249–251
    [Google Scholar]
  38. Xie M.-F., Tanaka K., Ono N., Minagawa H., Yanagi Y. 1999; Amino acid substitutions at position 481 differently affect the ability of the measles virus hemagglutinin to induce cell fusion in monkey and marmoset cells co-expressing the fusion protein. Archives of Virology 144:1689–1699
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-83-6-1431
Loading
/content/journal/jgv/10.1099/0022-1317-83-6-1431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error