Selection following isolation of human immunodeficiency virus type 1 in peripheral blood mononuclear cells and herpesvirus saimiri-transformed T cells is comparable Free

Abstract

In attempts to improve isolation rates and virus yields for human immunodeficiency virus (HIV), the use of herpesvirus saimiri-immortalized T cells (HVS T cells) has been investigated as an alternative to/improvement over peripheral blood mononuclear cells (PBMCs). Here we characterize isolates rescued, in the two cell types, from two asymptomatic, long-term non-progressing HIV-1-infected individuals. All rescued viruses replicated in PBMCs and HVS T cells only, displaying a non-syncytium inducing (NSI) phenotype, and using CCR5 as co-receptor. Furthemore, PBMC/HVS T cell virus pairs displayed similar neutralization profiles. Full-length, expression-competent genes were rescued from all virus isolates and directly from the patient samples using proviral DNA and viral RNA as templates. Compared with the sequences retrieved directly from the patient samples, both cell types showed similar selection characteristics. Whilst the selections were distinct for individual patient samples, they shared a common characteristic in selecting for viruses with increased negative charge across the V2 domain of the viral glycoproteins. The latter was observed at the gene sequencing level for three other patients whose HIV strains were isolated in PBMCs only. This further supports a common selection for viral sequences that display a macrophage-tropic/NSI phenotype and shows that HVS T cells are a viable alternative to PBMCs for HIV-1 isolation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-6-1343
2002-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/6/0831343a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-6-1343&mimeType=html&fmt=ahah

References

  1. Bjorndal A., Deng H., Jansson M., Fiore J. R., Colognesi C., Karlsson A., Albert J., Scarlatti G., Littman D. R., Fenyo E. M. 1997; Coreceptor usage of primary human immunodeficiency virus type 1 isolates varies according to biological phenotype. Journal of Virology 71:7478–7487
    [Google Scholar]
  2. Bonfield J. K., Smith K., Staden R. 1995; A new DNA sequence assembly program. Nucleic Acids Research 23:4992–4999
    [Google Scholar]
  3. Caffrey D. R., O’Neill L. A., Shields D. C. 2000; A method to predict residues conferring functional differences between related proteins: application to MAP kinase pathways. Protein Science 9:655–670
    [Google Scholar]
  4. Callebaut C., Jacotot E., Blanco J., Krust B., Hovanessian A. G. 1998; Increased rate of HIV-1 entry and its cytopathic effect in CD4+/CXCR4+ T cells expressing relatively high levels of CD26. Experimental Cell Research 241:352–362
    [Google Scholar]
  5. Carrington M., Nelson G. W., Martin M. P., Kissner T., Vlahov D., Goedert J. J., Kaslow R., Buchbinder S., Hoots K., O’Brien S. J. 1999; HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283:1748–1752
    [Google Scholar]
  6. Chang J., Li S., Naif H., Cunningham A. L. 1994; The magnitude of HIV replication in monocytes and macrophages is influenced by environmental conditions, viral strain, and host cells. Journal of Leukocyte Biology 56:230–235
    [Google Scholar]
  7. Connor R. I., Ho D. D. 1994; Human immunodeficiency virus type 1 variants with increased replicative capacity develop during the asymptomatic stage before disease progression. Journal of Virology 68:4400–4408
    [Google Scholar]
  8. Cornelissen M., Hogervorst E., Zorgdrager F., Hartman S., Goudsmit J. 1995; Maintenance of syncytium-inducing phenotype of HIV type 1 is associated with positively charged residues in the HIV type 1 gp120 V2 domain without fixed positions, elongation, or relocated N-linked glycosylation sites. AIDS Research and Human Retroviruses 11:1169–1175
    [Google Scholar]
  9. Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., Di Marzio P., Marmon S., Sutton R. E., Hill C. M., Davis C. B., Peiper S. C., Schall T. J., Littman D. R., Landau N. R. 1996; Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666
    [Google Scholar]
  10. Dittmar M. T., Simmons G., Hibbitts S., O’Hare M., Louisirirotchanakul S., Beddows S., Weber J., Clapham P. R., Weiss R. A. 1997; Langerhans cell tropism of human immunodeficiency virus type 1 subtype A through F isolates derived from different transmission groups. Journal of Virology 71:8008–8013
    [Google Scholar]
  11. Douglas N. W., Knight A. I., Hayhurst A., Barrett W. Y., Kevany M. J., Daniels R. S. 1996; An efficient method for the rescue and analysis of functional HIV-1 env genes: evidence for recombination in the vicinity of the tat/rev splice site. AIDS 10:39–46
    [Google Scholar]
  12. Douglas N. W., Munro G. H., Daniels R. S. 1997; HIV/SIV glycoproteins: structure–function relationships. Journal of Molecular Biology 273:122–149
    [Google Scholar]
  13. Dragic T., Litwin V., Allaway G. P., Martin S. R., Huang Y., Nagashima K. A., Cayanan C., Maddon P. J., Koup R. A., Moore J. P., Paxton W. A. 1996; HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673
    [Google Scholar]
  14. Evans L. A., McHugh T. M., Stites D. P., Levy J. A. 1987; Differential ability of human immunodeficiency virus isolates to productively infect human cells. Journal of Immunology 138:3415–3418
    [Google Scholar]
  15. Feng Y., Broder C. C., Kennedy P. E., Berger E. A. 1996; HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877
    [Google Scholar]
  16. Fenyo E. M., Morfeldt-Manson L., Chiodi F., Lind B., von Gegerfelt A., Albert J., Olausson E., Asjo B. 1988; Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates. Journal of Virology 62:4414–4419
    [Google Scholar]
  17. Fouchier R. A., Groenink M., Kootstra N. A., Tersmette M., Huisman H. G., Miedema F., Schuitemaker H. 1992; Phenotype-associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gp120 molecule. Journal of Virology 66:3183–3187
    [Google Scholar]
  18. Fox D. G., Balfe P., Palmer C. P., May J. C., Arnold C., McKeating J. A. 1997; Length polymorphism within the second variable region of the human immunodeficiency virus type 1 envelope glycoprotein affects accessibility of the receptor binding site. Journal of Virology 71:759–765
    [Google Scholar]
  19. Iversen A. K., Shpaer E. G., Rodrigo A. G., Hirsch M. S., Walker B. D., Sheppard H. W., Merigan T. C., Mullins J. I. 1995; Persistence of attenuated rev genes in a human immunodeficiency virus type 1-infected asymptomatic individual. Journal of Virology 69:5743–5753
    [Google Scholar]
  20. Jeang K. T., Xiao H., Rich E. A. 1999; Multifaceted activities of the HIV-1 transactivator of transcription. Tat. Journal of Biological Chemistry 274:28837–28840
    [Google Scholar]
  21. Koito A., Stamatatos L., Cheng-Mayer C. 1995; Small amino acid sequence changes within the V2 domain can affect the function of a T-cell line-tropic human immunodeficiency virus type 1 envelope gp120. Virology 206:878–884
    [Google Scholar]
  22. Kroner B. L., Goedert J. J., Blattner W. A., Wilson S. E., Carrington M. N., Mann D. L. 1995; Concordance of human leukocyte antigen haplotype-sharing, CD4 decline and AIDS in hemophilic siblings. Multicenter Hemophilia Cohort and Hemophilia Growth and Development Studies. AIDS 9:275–280
    [Google Scholar]
  23. Kusumi K., Conway B., Cunningham S., Berson A., Evans C., Iversen A. K., Colvin D., Gallo M. V., Coutre S., Shpaer E. G. and others 1992; Human immunodeficiency virus type 1 envelope gene structure and diversity in vivo and after cocultivation in vitro. Journal of Virology 66:875–885
    [Google Scholar]
  24. LaRosa G. J., Davide J. P., Weinhold K., Waterbury J. A., Profy A. T., Lewis J. A., Langlois A. J., Dreesman G. R., Boswell R. N., Shadduck P. and others 1990; Conserved sequence and structural elements in the HIV-1 principal neutralizing determinant. Science 249:932–935
    [Google Scholar]
  25. Meyerhans A., Cheynier R., Albert J., Seth M., Kwok S., Sninsky J., Morfeldt-Manson L., Asjo B., Wain-Hobson S. 1989; Temporal fluctuations in HIV quasispecies in vivo are not reflected by sequential HIV isolations. Cell 58:901–910
    [Google Scholar]
  26. Miller R. H., Sarver N. 1997; HIV accessory proteins as therapeutic targets. Nature Medicine 3:389–394
    [Google Scholar]
  27. Pearson W. R., Robins G., Zhang T. 1999; Generalized neighbor-joining: more reliable phylogenetic tree reconstruction. Molecular Biology and Evolution 16:806–816
    [Google Scholar]
  28. Pollard V. W., Malim M. H. 1998; The HIV-1 Rev protein. Annual Review of Microbiology 52:491–532
    [Google Scholar]
  29. Rizzuto C. D., Wyatt R., Hernandez-Ramos N., Sun Y., Kwong P. D., Hendrickson W. A., Sodroski J. 1998; A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science 280:1949–1953
    [Google Scholar]
  30. Sawyer L. S., Wrin M. T., Crawford-Miksza L., Potts B., Wu Y., Weber P. A., Alfonso R. D., Hanson C. V. 1994; Neutralization sensitivity of human immunodeficiency virus type 1 is determined in part by the cell in which the virus is propagated. Journal of Virology 68:1342–1349
    [Google Scholar]
  31. Schuitemaker H., Koot M., Kootstra N. A., Dercksen M. W., de Goede R. E., van Steenwijk R. P., Lange J. M., Schattenkerk J. K., Miedema F., Tersmette M. 1992; Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population. Journal of Virology 66:1354–1360
    [Google Scholar]
  32. Shotton C., Arnold C., Sattentau Q., Sodroski J., McKeating J. A. 1995; Identification and characterization of monoclonal antibodies specific for polymorphic antigenic determinants within the V2 region of the human immunodeficiency virus type 1 envelope glycoprotein. Journal of Virology 69:222–230
    [Google Scholar]
  33. Smith S. W., Overbeek R., Woese C. R., Gilbert W., Gillevet P. M. 1994; The genetic data environment: an expandable GUI for multiple sequence analysis. Computer Applications in the Biosciences 10:671–675
    [Google Scholar]
  34. Spira A. I., Ho D. D. 1995; Effect of different donor cells on human immunodeficiency virus type 1 replication and selection in vitro. Journal of Virology 69:422–429
    [Google Scholar]
  35. Vella C., Fickenscher H., Atkins C., Penny M., Daniels R. 1997; Herpesvirus saimiri-immortalized human T cells support long-term, high titred replication of human immunodeficiency virus types 1 and 2. Journal of General Virology 78:1405–1409
    [Google Scholar]
  36. Vella C., Gregory J., Bristow R., Troop M., Easterbrook P., Zheng N., Daniels R. 1999a; Isolation of HIV type 1 from long-term nonprogressors in herpesvirus saimiri-immortalized T cells. AIDS Research and Human Retroviruses 15:1145–1147
    [Google Scholar]
  37. Vella C., Zheng N. N., Vella G., Atkins C., Bristow R. G., Fickenscher H., Daniels R. S. 1999b; Enhanced replication of M-tropic HIV-1 strains in Herpesvirus saimiri immortalised T-cells which express CCR5. Journal of Virological Methods 79:51–63
    [Google Scholar]
  38. Vella C., King D., Zheng N. N., Fickenscher H., Breuer J., Daniels R. S. 1999c; Alterations in the V1/V2 domain of HIV-2CBL24 glycoprotein 105 correlate with an extended cell tropism. AIDS Research and Human Retroviruses 15:1399–1402
    [Google Scholar]
  39. von Briesen H., Andreesen R., Rubsamen-Waigmann H. 1990; Systematic classification of HIV biological subtypes on lymphocytes and monocytes/macrophages. Virology 178:597–602
    [Google Scholar]
  40. Wallace D. L., Matear P. M., Davies D. C., Hicks R., Lebosse C., Eyeson J., Beverley P. C., Vyakarnam A. 2000; CD7 expression distinguishes subsets of CD4(+) T cells with distinct functional properties and ability to support replication of HIV-1. European Journal of Immunology 30:577–585
    [Google Scholar]
  41. Wang W. K., Essex M., Lee T. H. 1995; The highly conserved aspartic acid residue between hypervariable regions 1 and 2 of human immunodeficiency virus type 1 gp120 is important for early stages of virus replication. Journal of Virology 69:538–542
    [Google Scholar]
  42. Willey R. L., Shibata R., Freed E. O., Cho M. W., Martin M. A. 1996; Differential glycosylation, virion incorporation, and sensitivity to neutralizing antibodies of human immunodeficiency virus type 1 envelope produced from infected primary T-lymphocyte and macrophage cultures. Journal of Virology 70:6431–6436
    [Google Scholar]
  43. Wu Z., Kayman S. C., Honnen W., Revesz K., Chen H., Vijh-Warrier S., Tilley S. A., McKeating J., Shotton C., Pinter A. 1995; Characterization of neutralization epitopes in the V2 region of human immunodeficiency virus type 1 gp120: role of glycosylation in the correct folding of the V1/V2 domain. Journal of Virology 69:2271–2278
    [Google Scholar]
  44. Zhu T., Mo H., Wang N., Nam D. S., Cao Y., Koup R. A., Ho D. D. 1993; Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science 261:1179–1181
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-6-1343
Loading
/content/journal/jgv/10.1099/0022-1317-83-6-1343
Loading

Data & Media loading...

Most cited Most Cited RSS feed