1887

Abstract

The human immunodeficiency virus type 1 (HIV-1) Tat protein transduction domain (PTD), which contains a high proportion of arginine and lysine residues, is responsible for highly efficient protein transduction through the plasma membrane. To identify the role of the PTD sequence motif in transduction, various deletions and substitutions were introduced into the PTD. Tat–green fluorescent protein (GFP) fusion proteins, containing various lengths of the Tat PTD, were expressed and the extent of their transduction into mammalian cells was analysed by Western blot analysis and fluorescence microscopy. Deletion analysis of PTD mapped to a nine amino acid motif (residues 49–57: RKKRRQRRR) sufficient for transduction. Further deletion of this Tat basic domain either at the N terminus or at the C terminus significantly decreased transduction efficiency. The transduction efficiencies of GFPs fused to nine consecutive lysine (9Lys–GFP) or arginine (9Arg–GFP) residues were similar to that of Tat(49–57)–GFP. The transduced proteins localized to both the nucleus and the cytosol, as assessed by confocal microscopy and Western blot analysis of subcellular fractions from transduced cells. Thus, the availability of recombinant GFP fusion proteins facilitates the simple and specific identification of protein transduction mediated by these peptide sequences. The modified PTD sequences designed in this study may provide useful tools necessary for delivering therapeutic proteins/peptides into cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-5-1173
2002-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/5/0831173a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-5-1173&mimeType=html&fmt=ahah

References

  1. Bonifaci N., Sitia R., Rubartelli A. 1995; Nuclear translocation of an exogenous fusion protein containing HIV Tat requires unfolding. AIDS 9:995–1000
    [Google Scholar]
  2. Bradford M. A. 1976; A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  3. Derossi D., Joliot A. H., Chassaing G., Prochiantz A. 1994; The third helix of the Antennapedia homeodomain translocates through biological membranes. Journal of Biological Chemistry 269:10444–10450
    [Google Scholar]
  4. Derossi D., Calvet S., Trembleau A., Brunissen A., Chassaing G., Prochiantz A. 1996; Cell internalization of the third helix of the antennapedia homeodomain is receptor-independent. Journal of Biological Chemistry 271:18188–18193
    [Google Scholar]
  5. Derossi D., Chassaing G., Prochiantz A. 1998; Trojan peptides: the penetration system for intracellular delivery. Trends in Cell Biology 8:84–87
    [Google Scholar]
  6. Efthymiadis A., Briggs L. J., Jans D. A. 1998; The HIV-1 Tat nuclear localization sequence confers novel nuclear import properties. Journal of Biological Chemistry 273:1623–1628
    [Google Scholar]
  7. Egleton R. D., Davis T. P. 1997; Bioavailability and transport of peptides and peptide drugs into the brain. Peptides 18:1431–1439
    [Google Scholar]
  8. Elliott G., O’Hare P. 1997; Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88:223–233
    [Google Scholar]
  9. Ensoli B., Buonaguro L., Barillari G., Fiorelli V., Gendelman R., Morgan R. A., Wingfield P., Gallo R. C. 1993; Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. Journal of Virology 67:277–287
    [Google Scholar]
  10. Fawell S., Seery J., Daikh Y., Moore C., Chen L. L., Pepinsky B., Barsoum J. 1994; Tat-mediated delivery of heterologous proteins into cells. Proceedings of the National Academy of Sciences, USA 91:664–668
    [Google Scholar]
  11. Frankel A. D., Pabo C. O. 1988; Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 55:1189–1193
    [Google Scholar]
  12. Green M., Loewenstein P. M. 1988; Autonomous functional domains of chemically synthesized human immunodeficiency virus Tat trans-activator protein. Cell 55:1179–1188
    [Google Scholar]
  13. Han K., Jeon M.-J., Kim K.-A., Park J., Choi S. Y. 2000; Efficient intracellular delivery of GFP by homeodomains of Drosophila Fushi-tarazu and Engrailed proteins. Molecules and Cells 10:728–732
    [Google Scholar]
  14. Jin L. H., Bahn J. H., Eum W. S., Kwon H. Y., Jang S. H., Han K., Kang T.-C., Won M. H., Kang J. H., Cho S.-W., Park J., Choi S. Y. 2001; Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich peptides into mammalian cells. Free Radical Biology and Medicine 31:1509–1519
    [Google Scholar]
  15. Joliot A., Pernelle C., Deagostini-Bazin H., Prochiantz A. 1991; Antennapedia homeobox peptide regulates neural morphogenesis. Proceedings of the National Academy of Sciences, USA 88:1864–1868
    [Google Scholar]
  16. Kwon H. Y., Eum W. S., Jang H. W., Kang J. H., Ryu J., Lee B. R., Jin L. H., Park J., Choi S. Y. 2000; Transduction of Cu,Zn-superoxide dismutase mediated by a HIV-1 Tat protein basic domain into mammalian cells. FEBS Letters 485:163–167
    [Google Scholar]
  17. Lee K. M., Park J., Kim J. H., Yie S. W., Chun G.-T., Kim P.-H., Choi E. Y. 1999; Reorganization of myosin and focal adhesion protein in Swiss 3T3 fibroblasts induced by transforming growth factor beta. Cell Biology International 23:507–517
    [Google Scholar]
  18. Lindgren M., Hallbrink M., Prochiantz A., Langel U. 2000; Cell-penetrating peptides. Trends in Pharmacological Sciences 21:99–103
    [Google Scholar]
  19. Mann D. A., Frankel A. D. 1991; Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO Journal 10:1733–1739
    [Google Scholar]
  20. Nagahara H., Vocero-Akbani A. M., Snyder E. L., Ho A., Latham D. G., Lissy N. A., Becker-Hapak M., Ezhevsky S. A., Dowdy S. F. 1998; Transduction of full-length TAT fusion proteins into mammalian cells: TAT–p27Kip1 induces cell migration. Nature Medicine 4:1449–1452
    [Google Scholar]
  21. Nare B., Allocco J. J., Kuningas R., Galuska S., Myers R. W., Bednarek M. A., Schmatz D. M. 1999; Development of a scintillation proximity assay for histone deacetylase using a biotinylated peptide derived from histone-H4. Analytical Biochemistry 267:390–396
    [Google Scholar]
  22. Park J., Ryu J., Jin L. H., Bahn J. H., Jang S. H., Lee B. R., Han K. H., Eum W. S., Kwon H. Y., Kang T. C., Won M. H., Kang J. H., Cho S. W., Choi S. Y. 2002; 9-Polylysine protein transduction domain; enhanced transduction efficiencies of superoxide dismutase into mammalian cells and skin. Molecules and Cells (in Press)
    [Google Scholar]
  23. Peloponese J. M. Jr., Gregoire C., Opi S., Esquieu D., Sturgis J., Lebrun E., Meurs E., Collette Y., Olive D., Aubertin A. M., Witvrow M., Pannecouque C., De Clercq E., Bailly C., Lebreton J., Loret E. P. 2000; 1H–13C nuclear magnetic resonance assignment and structural characterization of HIV-1 Tat protein. Comptes Rendus de l’Academie des Sciences Serie III 323:883–894
    [Google Scholar]
  24. Ruben S., Perkins A., Purcell R., Joung K., Sia R., Burghoff R., Haseltine W. A., Rosen C. A. 1989; Structural and functional characterization of human immunodeficiency virus Tat protein. Journal of Virology 63:1–8
    [Google Scholar]
  25. Rusnati M., Tulipano G., Urbinati C., Tanghetti E., Giuliani R., Giacca M., Corallini A., Presta M. 1998; The basic domain in HIV-1 Tat protein as a target for polysulfonated heparin-mimicking extracellular Tat antagonist. Journal of Biological Chemistry 273:16027–16037
    [Google Scholar]
  26. Sambrook J., Fritsch F. E., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Schwarze S. R., Dowdy S. F. 2000; In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends in Pharmacological Sciences 21:45–48
    [Google Scholar]
  28. Schwarze S. R., Ho A., Vocero-Akbani A., Dowdy S. F. 1999; In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572
    [Google Scholar]
  29. Schwarze S. R., Hruska K. A., Dowdy S. F. 2000; Protein transduction: unrestricted delivery into all cells?. Trends in Cell Biology 10:290–295
    [Google Scholar]
  30. Tsien R. Y. 1998; The green fluorescent protein. Annual Review of Biochemistry 67:509–544
    [Google Scholar]
  31. Tyagi M., Rusnati M., Presta M., Giacca M. 2001; Internalization of HIV-1 TAT requires cell surface heparan sulfate proteoglycans. Journal of Biological Chemistry 276:3254–3261
    [Google Scholar]
  32. Vives E., Brodin P., Lebleu B. 1997; A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. Journal of Biological Chemistry 272:16010–16017
    [Google Scholar]
  33. Vocero-Akbani A., Heyden N. A., Lissy N. A., Ratner L., Dowdy S. F. 1999; Killing HIV-infected cells by transduction with an HIV protease-activated caspase-3 protein. Nature Medicine 5:29–33
    [Google Scholar]
  34. Watson K., Edwards R. J. 1999; HIV-1-trans-activating (Tat) protein: both a target and a tool in therapeutic approaches. Biochemical Pharmacology 58:1521–1528
    [Google Scholar]
  35. Wender P., Mitchell D., Pattabiraman K., Pelkey E., Steinman L., Rothbard J. 2000; The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proceedings of the National Academy of Sciences, USA 97:13003–13008
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-5-1173
Loading
/content/journal/jgv/10.1099/0022-1317-83-5-1173
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error