1887

Abstract

Four human monocyte-derived macrophage membrane proteins, with apparent molecular masses of 27, 45, 67 and 87 kDa, were identified as possible receptors for dengue virus serotype 2 (DEN-2) (Mexican isolate 200787/1983), based on affinity chromatography, immunofluorescence, virus overlay protein-binding assays and Western blotting. Additionally, mouse polyclonal antibodies raised against each of the four proteins were capable of partially inhibiting DEN-2 infection of monocyte-macrophages, thus supporting the notion of a role for such proteins as DEN-2 receptors. Parallel studies were carried out using the human promonocytic U-937 cell line, both as undifferentiated cells and as monocyte-like phorbol myristate acetate (PMA)-differentiated cells, as target cells. Whereas interaction between DEN-2 and undifferentiated U-937 cells was almost negligible, PMA-differentiated U-937 cells were shown to harbour putative receptors (with molecular masses of 45 and 67 kDa) for DEN-2, similar to those found in human monocyte-derived macrophages. To our knowledge, this is the first report that describes putative receptors for DEN-2 in primary cultures of human macrophages.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-5-1123
2002-05-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/5/0831123a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-5-1123&mimeType=html&fmt=ahah

References

  1. Avirutnan, P., Malasit, P., Seliger, B., Bhakdi, S. & Husmann, M. ( 1998; ). Dengue virus infection of human endothelial cells leads to chemokine production, complement activation, and apoptosis. Journal of Immunology 161, 6338-6346.
    [Google Scholar]
  2. Bonner, S. M. & O’Sullivan, M. A. ( 1998; ). Endothelial cell monolayers as a model system to investigate dengue shock syndrome. Journal of Virological Methods 71, 159-167.[CrossRef]
    [Google Scholar]
  3. Chen, Y. C., Maguire, T., Hileman, R. E., Fromm, J. R., Esko, J. D., Linhardt, R. J. & Marks, R. M. ( 1997; ). Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nature Medicine 3, 866-871.[CrossRef]
    [Google Scholar]
  4. Chen, Y. C., Wang, S. Y. & King, C. C. ( 1999; ). Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocyte/macrophages by blockade of virus entry via CD14-dependent mechanism. Journal of Virology 73, 2650-2657.
    [Google Scholar]
  5. Couvelard, A., Marianneau, P., Bedel, C., Drouet, M. T., Vachon, F., Henin, D. & Deubel, V. ( 1999; ). Report of a fatal case of dengue infection with hepatitis: demonstration of dengue antigens in hepatocytes and liver apoptosis. Human Pathology 30, 1106-1110.[CrossRef]
    [Google Scholar]
  6. Daughaday, C. C., Brandt, W. E., McCown, J. M. & Russell, P. K. ( 1981; ). Evidence for two mechanisms of dengue virus infection of adherent human monocytes: trypsin-sensitive virus receptors and trypsin-resistant immune complex receptors. Infection and Immunity 32, 469-473.
    [Google Scholar]
  7. Despres, P., Frenkiel, M. P., Ceccaldi, P. E., Duarte Dos Santos, C. & Deubel, V. ( 1998; ). Apoptosis in the mouse central nervous system in response to infection with mouse-neurovirulent dengue viruses. Journal of Virology 72, 823-829.
    [Google Scholar]
  8. Diamond, M. S., Edgil, D., Roberts, T. G., Lu, B. & Harris, E. ( 2000; ). Infection of human cells by dengue virus is modulated by different cell types and viral strains. Journal of Virology 74, 7814-7823.[CrossRef]
    [Google Scholar]
  9. Falconar, A. K. I., Young, P. R. & Miles, M. A. ( 1994; ). Precise location of sequential dengue virus subcomplex and complex B cell epitopes on the nonstructural-1 glycoprotein. Archives of Virology 137, 315-326.[CrossRef]
    [Google Scholar]
  10. Gollins, S. W. & Porterfield, J. S. ( 1985; ). Flavivirus infection enhancement in macrophages: an electron microscopic study of viral cellular entry. Journal of General Virology 66, 1969-1982.[CrossRef]
    [Google Scholar]
  11. Gould, E. A. & Clegg, C. S. (1991). Growth, titration and purification of alphaviruses and flaviviruses. In Virology: A practical approach. Edited by B. W. J. Mahy. Oxford: IRL Press.
  12. Gubler, D. J. ( 1998; ). Dengue and dengue hemorrhagic fever. Clinical Microbiology Reviews 11, 480-496.
    [Google Scholar]
  13. Hall, W. C., Crowell, T. P., Watts, D. M., Barros, V. L. R., Kruger, B., Pinheiro, F. & Peters, C. J. ( 1991; ). Demonstration of yellow fever and dengue antigens in formalin-fixed paraffin-embedded human liver by immunohistochemical analysis. American Journal of Tropical Medicine and Hygiene 45, 408-417.
    [Google Scholar]
  14. Halstead, S. B. ( 1989; ). Antibody, macrophages, dengue virus infection, shock, and hemorrhage: a pathogenic cascade. Reviews of Infectious Diseases 11 (Suppl. 4), 5830–5839.
    [Google Scholar]
  15. Ho, L.-J., Wang, J.-J., Shaio, M. F., Kao, C.-L., Chang, D.-M., Han, S.-W. & Lai, J.-H. ( 2001; ). Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. Journal of Immunology 166, 1499-1506.[CrossRef]
    [Google Scholar]
  16. Kurane, I., Kontny, U., Janus, J. & Ennis, F. A. ( 1990; ). Dengue-2 virus infection of human mononuclear cell lines and establishment of persistent infections. Archives of Virology 110, 91-101.[CrossRef]
    [Google Scholar]
  17. Kurane, I., Janus, J. & Ennis, F. A. ( 1992; ). Dengue virus infection of human skin fibroblasts in vitro production of IFN-β, IL-6 and GM-CSF. Archives of Virology 124, 21-30.[CrossRef]
    [Google Scholar]
  18. Kurane, I., Rothman, A., Livingston, P., Green, S., Gagnon, S., Janus, J., Innis, B., Nimmannitya, S., Nisalak, A. & Ennis, F. ( 1994; ). Immunopathologic mechanisms of dengue hemorrhagic fever and dengue shock syndrome. Archives of Virology 9, 59-64.
    [Google Scholar]
  19. Larrick, J. W., Fischer, D. G., Anderson, S. J. & Koren, H. S. ( 1980; ). Characterization of a human macrophage-like cell line stimulated in vitro: a model of macrophage functions. Journal of Immunology 125, 6-12.
    [Google Scholar]
  20. Leitmeyer, K. C., Vaughn, D. W., Watts, D. M., Salas, R., Villalobos de Chacon, I., Ramos, C. & Rico-Hesse, R. ( 1999; ). Dengue virus structural differences that correlate with pathogenesis. Journal of Virology 73, 4738-4747.
    [Google Scholar]
  21. Littaua, R., Kurane, I. & Ennis, F. A. ( 1990; ). Human IgG Fc receptor II mediates antibody-dependent enhancement of dengue virus infection. Journal of Immunology 144, 3183-3186.
    [Google Scholar]
  22. McBride, W. J. H. & Bielefeldt-Ohmann, H. ( 2000; ). Dengue viral infections; pathogenesis and epidemiology. Microbes and Infection 2, 1041-1050.[CrossRef]
    [Google Scholar]
  23. Mady, B. J., Kurane, I., Erbe, D. V., Fanger, M. W. & Ennis, F. A. ( 1993; ). Neuraminidase augments Fcγ receptor II-mediated antibody-dependent enhancement of dengue virus infection. Journal of General Virology 74, 839-844.[CrossRef]
    [Google Scholar]
  24. Mangada, M. N. & Igarashi, A. ( 1998; ). Molecular and in vitro analysis of eight dengue type 2 viruses isolated from patients exhibiting different disease severities. Virology 244, 458-466.[CrossRef]
    [Google Scholar]
  25. Marianneau, P., Cardona, A., Edelman, L., Deubel, V. & Despres, P. ( 1997; ). Dengue virus replication in human hepatoma cells activates NFκB which in turn induces apoptotic cell death. Journal of Virology 71, 3244-3249.
    [Google Scholar]
  26. Martı́nez-Barragán, J. J. & del Angel, R. M. ( 2001; ). Identification of a putative coreceptor on Vero cells that participates in dengue 4 virus infection. Journal of Virology 75, 7818-7827.[CrossRef]
    [Google Scholar]
  27. Mentor, N. A. & Kurane, I. ( 1997; ). Dengue virus infection of human T lymphocytes. Acta Virologica 41, 175-176.
    [Google Scholar]
  28. Monath, T. P. ( 1994; ). Dengue: the risk to developed and developing countries. Proceedings of the National Academy of Sciences, USA 91, 2395-2400.[CrossRef]
    [Google Scholar]
  29. Morens, D. M. ( 1994; ). Antibody-dependent enhancement of infection and the pathogenesis of viral disease. Clinical Infectious Diseases 19, 500-512.[CrossRef]
    [Google Scholar]
  30. Moretta, L., Webb, S. R., Grossi, C. E., Lydyard, P. M. & Cooper, M. D. ( 1977; ). Functional analysis of two human T-cell subpopulations: help and suppression of B-cell responses by T cells bearing receptors for IgM or IgG. Journal of Experimental Medicine 146, 184-200.[CrossRef]
    [Google Scholar]
  31. Morrison, M. ( 1980; ). Lactoperoxidase-catalyzed iodination as a tool for investigation of protein. Methods in Enzymology 70, 214-220.
    [Google Scholar]
  32. Muñoz, M. L., Cisneros, A., Cruz, J., Das, P., Tovar, R. & Ortega, A. ( 1998; ). Putative dengue virus receptors from mosquito cells. FEMS Microbiology Letters 168, 251-258.[CrossRef]
    [Google Scholar]
  33. O’Sullivan, M. A. & Killen, H. M. ( 1994; ). The differentiation state of monocytic cells affects their susceptibility to infection and the effects of infection by dengue virus. Journal of General Virology 75, 2387-2392.[CrossRef]
    [Google Scholar]
  34. Ralph, P., Williams, N., Moore, M. A. S. & Litcofsky, P. B. ( 1982; ). Induction of antibody-dependent and nonspecific tumor killing in human monocytic leukemia cells by nonlymphocyte factors and phorbol ester. Cellular Immunology 71, 215-223.[CrossRef]
    [Google Scholar]
  35. Ramos-Castañeda, J., Imbert, J. L., Barrón, B. L. & Ramos, C. ( 1997; ). A 65-kDa trypsin-sensible membrane cell protein as a possible receptor for dengue virus in cultured neuroblastoma cells. Journal of Neurovirology 3, 435-440.[CrossRef]
    [Google Scholar]
  36. Rosen, L., Drouet, M. T. & Deubel, V. ( 1999; ). Detection of dengue virus RNA by reverse transcription–polymerase chain reaction in the liver and lymphoid organs but not in the brain in fatal human infection. American Journal of Tropical Medicine and Hygiene 61, 720-724.
    [Google Scholar]
  37. Rothwell, S. W., Putnak, R. & La Russa, V. F. ( 1996; ). Dengue-2 virus infection of human bone marrow: characterization of dengue-2 antigen-positive stromal cells. American Journal of Tropical Medicine and Hygiene 54, 503-510.
    [Google Scholar]
  38. Ruiz, B. H., Sánchez, I., Ortega, G., López, I., Rosales, L. & Medina, G. ( 1999; ). Phylogenetic comparison of the DEN-2 Mexican isolate with other flaviviruses. Intervirology 43, 48-54.
    [Google Scholar]
  39. Salas-Benito, J. S. & del Angel, R. M. ( 1997; ). Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus. Journal of Virology 71, 7246-7252.
    [Google Scholar]
  40. Scott, R. M., Nisalak, A., Cheamudon, U., Seridhoranakul, S. & Nimmannitya, S. ( 1980; ). Isolation of dengue viruses from peripheral blood leukocytes of patients with hemorrhagic fever. Journal of Infectious Diseases 141, 1-6.[CrossRef]
    [Google Scholar]
  41. Sundstrom, C. & Nilsson, K. ( 1976; ). Establishment and characterization of a human histiocytic lymphoma cell line (U-937). International Journal of Cancer 17, 565-577.[CrossRef]
    [Google Scholar]
  42. Wu, S.-J., Grouard-Vogel, G., Sun, W., Mascola, J. R., Brachtel, E., Putvatana, R., Louder, M. K., Filgueira, L., Marovich, M. A., Wong, H. K. and others ( 2000; ). Human skin Langerhans cells are targets of dengue virus infection. Nature Medicine 6, 816–820.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-5-1123
Loading
/content/journal/jgv/10.1099/0022-1317-83-5-1123
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error