1887

Abstract

(Braconidae, Hymenoptera) is a solitary egg-larval parasitoid of . Along with the egg the female wasp injects polydnaviruses, which are prerequisites for successful parasitoid development. The polydnavirus genome is segmented and consists of double-stranded circular DNA. Proviral DNA is integrated in the wasp’s genome; virus replication is restricted to the wasp’s ovary and does not occur in the parasitized host. The polydnavirus of (CiV) protects the parasitoid larva from encapsulation by the host’s immune system and causes a developmental arrest of the host in the prepupal stage. Here we report on the first two cloned CiV genes, which are named CiV14g1 and CiV14g2 because of their localization on segment CiV14. The cDNA of CiV14g1 has a size of 2036 bp; the gene contains seven exons interrupted by six introns of similar size and encodes a putative polypeptide of 548 amino acids. The cDNA of CiV14g2 has a size of 618 bp; the gene consists of three exons and encodes a putative peptide of 77 amino acids. Transcript quantities of both genes are very low up to the penultimate larval instar of the host. In the last instar, at the stage of pupal cell formation, CiV14g1 expression increases about 5-fold and CiV14g2 expression about a 1000-fold. These are the first data to show strong upregulation of polydnavirus genes towards the end of parasitization. These two genes might be involved in the reduction of host ecdysteroids observed at this stage.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-5-1075
2002-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/5/0831075a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-5-1075&mimeType=html&fmt=ahah

References

  1. Albrecht U., Wyler T., Pfister-Wilhelm R., Gruber A., Stettler P., Heiniger P., Kurt E., Schümperli D., Lanzrein B. 1994; Polydnavirus of the parasitic wasp Chelonus inanitus (Braconidae): characterization, genome organization and time point of replication. Journal of General Virology 75:3353–3363
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:3389–3402
    [Google Scholar]
  3. Asgari S., Hellers M., Schmidt O. 1996; Host haemocyte inactivation by an insect parasitoid: transient expression of a polydnavirus gene. Journal of General Virology 77:2653–2662
    [Google Scholar]
  4. Beaudoing E., Freier S., Wyatt J. R., Claverie J., Gautheret D. 2000; Patterns of variant polyadenylation signal usage in human genes. Genome Research 10:1001–1010
    [Google Scholar]
  5. Béliveau C., Laforge M., Cusson M., Bellemare G. 2000; Expression of a Tranosema rostrale polydnavirus gene in the spruce budworm, Choristoneura fumiferana . Journal of General Virology 81:1871–1880
    [Google Scholar]
  6. Blissard G. W., Smith O. P., Summers M. D. 1987; Two related viral genes are located on a single superhelical DNA segment of the multipartite Campoletis sonorensis virus genome. Virology 160:120–134
    [Google Scholar]
  7. Cui L., Webb B. A. 1996; Isolation and characterization of a member of the cysteine-rich gene family from Campoletis sonorensis polydnavirus. Journal of General Virology 77:797–809
    [Google Scholar]
  8. Galas D. J., Calos M. P., Miller J. H. 1980; Sequence analysis of Tn9 insertions in the lacZ gene. Journal of Molecular Biology 144:19–41
    [Google Scholar]
  9. Grossniklaus-Bürgin C., Wyler T., Pfister-Wilhelm R., Lanzrein B. 1994; Biology and morphology of the parasitoid Chelonus inanitus (Braconidae, Hymenoptera) and effects on the development of its host Spodoptera littoralis (Noctuidae, Lepidoptera). Invertebrate Reproduction and Development 25:143–158
    [Google Scholar]
  10. Grossniklaus-Bürgin C., Pfister-Wilhelm R., Meyer V., Treiblmayr K., Lanzrein B. 1998; Physiological and endocrine changes associated with polydnavirus/venom in the parasitoid–host system Chelonus inanitus–Spodoptera littoralis . Journal of Insect Physiology 44:305–321
    [Google Scholar]
  11. Gruber A., Stettler P., Heiniger P., Schümperli D., Lanzrein B. 1996; Polydnavirus DNA of the braconid wasp Chelonus inanitus is integrated in the wasp’s genome and excised only in later pupal and adult stages of the female. Journal of General Virology 77:2873–2879
    [Google Scholar]
  12. Hansen J. E., Lund O., Tolstrup N., Gooley A. A., Williams K. L., Brunak S. 1998; Prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconjugate Journal 15:115–130
    [Google Scholar]
  13. Harwood S. H., Beckage N. E. 1994; Purification and characterization of an early-expressed polydnavirus-induced protein from the hemolymph of Manduca sexta larvae parasitized by Cotesia congregata . Insect Biochemistry and Molecular Biology 24:685–698
    [Google Scholar]
  14. Harwood S. H., Grosovsky A. J., Cowles E. A., Davis J. W., Beckage N. E. 1994; An abundantly expressed hemolymph glycoprotein isolated from newly parasitized Manduca sexta larvae is a polydnavirus gene product. Virology 205:381–392
    [Google Scholar]
  15. Henikoff S., Henikoff J. G. 1994; Protein family classification based on searching a database of blocks. Genomics 19:97–107
    [Google Scholar]
  16. Hofmann K., Bucher P., Falquet L., Bairoch A. 1999; The PROSITE database, its status in 1999. Nucleic Acids Research 27:215–219
    [Google Scholar]
  17. Johner A., Stettler P., Gruber A., Lanzrein B. 1999; Presence of polydnavirus transcripts in an egg-larval parasitoid and its lepidopterous host. Journal of General Virology 80:1847–1854
    [Google Scholar]
  18. Lanzrein B., Pfister-Wilhelm R., von Niederhäusern F. 2001; Effects of an egg-larval parasitoid and its polydnavirus on development and the endocrine system of the host. In Endocrine Interactions of Insect Parasites and Pathogens pp 95–109 Edited by Edwards J. P., Weaver R. Oxford: BIOS Scientific Publishers;
    [Google Scholar]
  19. Lawrence P. O., Lanzrein B. 1993; Hormonal interactions between insect endoparasites and their host insects. In Parasites and Pathogens of Insects pp 59–86 Edited by Beckage N. E., Thompson S. N., Federici B. A. San Diego: Academic Press;
    [Google Scholar]
  20. Nakai K., Horton P. 1999; PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends in Biochemical Sciences 24:34–36
    [Google Scholar]
  21. Pfister-Wilhelm R., Lanzrein B. 1996; Precocious induction of metamorphosis in Spodoptera littoralis (Noctuidae) by the parasitic wasp Chelonus inanitus (Braconidae): identification of the parasitoid larva as the key element and the host corpora allata as a main target. Archives of Insect Biochemistry and Physiology 32:511–525
    [Google Scholar]
  22. Salt G. 1968; The resistance of insect parasitoids to the defence reactions of their hosts. Biological Reviews 43:200–232
    [Google Scholar]
  23. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Schmidt O., Theopold M., Strand M. R. 2001; Innate immunity and its evasion and suppression by hymenopteran endoparasitoids. Bioessays 23:344–351
    [Google Scholar]
  25. Soller M., Lanzrein B. 1996; Polydnavirus and venom of the egg-larval parasitoid Chelonus inanitus (Braconidae) induce developmental arrest in the prepupa of its host Spodoptera littoralis (Noctuidae). Journal of Insect Physiology 42:471–481
    [Google Scholar]
  26. Solovyev V. V., Salamov A. A. 1999; INFOGENE: a database of known gene structures and predicted genes and proteins in sequences of genome sequencing. Nucleic Acids Research 27:248–250
    [Google Scholar]
  27. Steiner B., Pfister-Wilhelm R., Grossniklaus-Bürgin C., Rembold H., Treiblmayr K., Lanzrein B. 1999; Titres of juvenile hormone I, II and III in Spodoptera littoralis (Noctuidae) from the egg to the pupal moult and their modification by the egg-larval parasitoid Chelonus inanitus (Braconidae). Journal of Insect Physiology 45:401–413
    [Google Scholar]
  28. Stettler P., Trenczek T., Wyler T., Pfister-Wilhelm R., Lanzrein B. 1998; Overview of parasitism associated effects on host haemocytes in larval parasitoids and comparison with effects of the egg-larval parasitoid Chelonus inanitus on its host Spodoptera littoralis . Journal of Insect Physiology 44:817–831
    [Google Scholar]
  29. Stoltz D. B., Beckage N. E., Blissard G. W., Fleming J. G. W., Krell P. J., Theilmann D. A., Summers M. D., Webb B. A. 1995; Polydnaviridae. In Virus Taxonomy pp 143–147 Edited by Murphy F. A., Fauquet C. M., Bishop D. H. L., Ghabrial S. A., Jarvis A. W., Martelli G. P., Mayo M. A., Summers M. D. Vienna & New York: Springer-Verlag;
    [Google Scholar]
  30. Strand M. R., McKenzie D. I., Grassl V., Dover B. A., Aiken J. M. 1992; Persistence and expression of Microplitis demolitor polydnavirus in Pseudoplusia includens . Journal of General Virology 73:1627–1635
    [Google Scholar]
  31. Strand M. R., Witherell S. A., Trudeau D. 1997; Two Microplitis demolitor polydnavirus mRNAs expressed in hemocytes of Pseudoplusia includens contain a common cysteine-rich domain. Journal of Virology 71:2146–2156
    [Google Scholar]
  32. Theilmann D. A., Summers M. D. 1986; Molecular analysis of Campoletis sonorensis virus DNA in the lepidopteran host Heliothis virescens . Journal of General Virology 67:1961–1969
    [Google Scholar]
  33. Theilmann D. A., Summers M. D. 1988; Identification and comparison of Campoletis sonorensis virus transcripts expressed from 4 genomic segments in the hosts Campoletis sonorensis and Heliothis virescens . Virology 167:329–341
    [Google Scholar]
  34. Trudeau D., Witherell R. A., Strand M. R. 2000; Characterization of two novel Microplitis demolitor polydnavirus mRNAs expressed in Pseudoplusia includens haemocytes. Journal of General Virology 81:3049–3058
    [Google Scholar]
  35. Varricchio P., Falabella P., Sordetti R., Graziani F., Malva C., Pennacchio F. 1999; Cardiochiles nigriceps polydnavirus: molecular characterization and gene expression in parasitized Heliothis virescens larvae. Insect Biochemistry and Molecular Biology 29:1087–1096
    [Google Scholar]
  36. Volkoff A. N., Cerutti P., Rocher J., Ohresser M. C. P., Devauchelle G., Duonor-Cerutti M. 1999; Related RNAs in lepidopteran cells after in vitro infection with Hyposoter didymator virus define a new polydnavirus gene family. Virology 263:349–363
    [Google Scholar]
  37. Webb B. A. 1998; Polydnavirus biology, genome structure, and evolution. In The Insect Viruses pp 105–139 Edited by Miller L. K., Ball L. A. New York & London: Plenum Press;
    [Google Scholar]
  38. Webb B. A., Cui L. 1998; Relationships between polydnavirus genomes and viral gene expression. Journal of Insect Physiology 44:785–793
    [Google Scholar]
  39. Wyder S., Tschannen A., Hochuli A., Gruber A., Saladin V., Zumbach S., Lanzrein B. 2002; Characterization of Chelonus inanitus polydnavirus segments: sequences and analysis, excision site and demonstration of clustering. Journal of General Virology 83:247–256
    [Google Scholar]
  40. Yamanaka A., Hayakawa Y., Noda H., Nakashina N., Watanabe H. 1996; Characterization of polydnaviurs-encoded mRNA in parasitized armyworm larvae. Insect Biochemistry and Molecular Biology 26:529–536
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-5-1075
Loading
/content/journal/jgv/10.1099/0022-1317-83-5-1075
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error