Gill-associated nidovirus of prawns transcribes 3′-coterminal subgenomic mRNAs that do not possess 5′-leader sequences Free

Abstract

Sequence analysis of the ∼20 kb 5′-terminal portion of the ssRNA genome of gill-associated virus (GAV) of prawns has previously established that it contains an ORF1a–1b replicase gene equivalent to those of the coronavirus and arterivirus members of the order . Sequence analysis of the remaining ∼6·2 kb of the GAV genome downstream of ORF1a–1b to a 3′-poly(A) tail has identified two highly conserved intergenic sequences in which 29/32 nucleotides are conserved. Northern hybridization using probes to the four putative GAV ORFs and either total or poly(A)-selected RNA identified two 3′-coterminal subgenomic (sg) mRNAs of ∼6 kb and ∼5·5 kb. Primer extension and 5′-RACE analyses showed that the sgmRNAs initiate at the same 5′-AC positions in the central region of the two conserved intergenic sequences. Neither method provided any evidence that the GAV sgmRNAs are fused to genomic 5′-leader RNA sequences as is the case with vertebrate coronaviruses and arteriviruses. Intracellular double-stranded (ds)RNAs equivalent in size to the 26·2 kb genomic RNA and two sgRNAs were also identified by RNase/DNase digestion of total RNA from GAV-infected prawn tissue. The identification of only two sgmRNAs that initiate at the same position in conserved intergenic sequences and the absence of 5′-genomic leader sequences fused to these sgmRNAs confirms that GAV has few genes and suggests that it utilizes a transcription mechanism possibly similar to the vertebrate toroviruses but distinct from coronaviruses and arteriviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-4-927
2002-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/4/0830927a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-4-927&mimeType=html&fmt=ahah

References

  1. Almeida T. A., Pérez J. A., Pinto F. M. 2000; Size-fractionation of RNA by hot-agarose electrophoresis. Biotechniques 28:414–416
    [Google Scholar]
  2. Baric R. S., Yount B. 2000; Subgenomic negative-strand RNA function during mouse hepatitis virus infection. Journal of Virology 74:4039–4046
    [Google Scholar]
  3. Boonyaratpalin S., Supamattaya K., Kasornchandra J., Direkbusaracom S., Aekpanithanpong U., Chantanachookin C. 1993; Non-occluded baculo-like virus, the causative agent of yellow-head disease in the black tiger shrimp ( Penaeus monodon ). Fish Pathology 28:103–109
    [Google Scholar]
  4. Chantanachookin C., Boonyaratpalin S., Kasornchandra J., Sataporn D., Ekpanithanpong U., Supamataya K., Sriurairatana S., Flegel T. W. 1993; Histology and ultrastructure reveal a new granulosis-like virus in Penaeus monodon affected by yellow-head disease. Diseases of Aquatic Organisms 17:145–157
    [Google Scholar]
  5. Cowley J. A., Dimmock C. M., Wongteerasupaya C., Boonsaeng V., Panyim S., Walker P. J. 1999; Yellow head virus from Thailand and gill-associated virus from Australia are closely related but distinct viruses. Diseases of Aquatic Organisms 36:153–157
    [Google Scholar]
  6. Cowley J. A., Dimmock C. M., Spann K. M., Walker P. J. 2000a; Detection of Australian gill-associated virus (GAV) and lymphoid organ virus (LOV) of Penaeus monodon by RT-nested PCR. Diseases of Aquatic Organisms 36:153–157
    [Google Scholar]
  7. Cowley J. A., Dimmock C. M., Spann K. M., Walker P. J. 2000b; Gill-associated virus of Penaeus monodon prawns: an invertebrate virus with ORF1a and ORF1b genes related to arteri- and coronaviruses. Journal of General Virology 81:1473–1484
    [Google Scholar]
  8. Cowley J. A., Dimmock C. M., Spann K. M., Walker P. J. 2001; Gill-associated virus of Penaeus monodon prawns: molecular evidence for the first invertebrate nidovirus. In The Nidoviruses pp 43–48 Edited by Lavi E., Weiss S. R., Hingley S. T. New York: Kluwer Academic/Plenum;
    [Google Scholar]
  9. De Vries A. A. F., Chirnside E. D., Bredenbeek P. J., Gravestein L. A., Horzinek M. C., Spaan W. J. M. 1990; All subgenomic mRNAs of equine arteritis virus contain a common leader sequence. Nucleic Acids Research 18:3241–3247
    [Google Scholar]
  10. De Vries A. A. F., Horzinek M. C., Rottier P. J. M., De Groot R. J. 1997; The genome organization of the Nidovirales: similarities and differences between arteri-, toro-, and coronaviruses. Seminars in Virology 8:33–47
    [Google Scholar]
  11. den Boon J. A., Kleijnen M. F., Spaan W. J., Snijder E. J. 1996; Equine arteritis virus subgenomic mRNA synthesis: analysis of leader-body junctions and replicative-form RNAs. Journal of Virology 70:4291–4298
    [Google Scholar]
  12. Dumas J. B., Edwards M., Delort J., Mallet J. 1991; Oligodeoxynucleotide ligation of single-stranded cDNAs: a new tool for cloning 5′ ends of mRNAs and for constructing cDNA libraries by in vitro amplification. Nucleic Acids Research 19:5227–5232
    [Google Scholar]
  13. Gowda S., Satyanarayana T., Ayllon M. A., Albiach-Marti M. R., Mawassi M., Rabindran S., Garnsey S. M., Dawson W. O. 2001; Characterization of the cis-acting elements controlling subgenomic mRNAs of citrus tristeza virus: production of positive- and negative-stranded 3′-terminal and positive-stranded 5′-terminal RNAs. Virology 286:134–151
    [Google Scholar]
  14. Guan H., Simon A. E. 2000; Polymerization of nontemplate bases before transcription initiation at the 3′ ends of templates by an RNA-dependent RNA polymerase: an activity involved in 3′ end repair of viral RNAs. Proceedings of the National Academy of Sciences, USA 97:12451–12456
    [Google Scholar]
  15. Hilf M. E., Karasev A. V., Pappu H. R., Gumpf D. J., Niblett C. L., Garnsey S. M. 1995; Characterization of citrus tristeza virus subgenomic RNAs in infected tissue. Virology 208:576–582
    [Google Scholar]
  16. Ingelbrecht I. L., Mandelbaum C. I., Mirkov T. E. 1998; Highly sensitive northern hybridization using a rapid protocol for downward alkaline blotting of RNA. Biotechniques 25:420–423
    [Google Scholar]
  17. Jendrach M., Thiel V., Siddell S. 1999; Characterization of an internal ribosome entry site within mRNA 5 of murine hepatitis virus. Archives of Virology 144:921–933
    [Google Scholar]
  18. Karasev A. V., Boyko V. P., Gowda S., Nikolaeva O. V., Hilf M. E., Koonin E. V., Niblett C. L., Cline K., Gumpf D. J., Lee R. F. 1995; Complete sequence of the citrus tristeza virus RNA genome. Virology 208:511–520
    [Google Scholar]
  19. Karasev A. V., Hilf M. E., Garnsey S. M., Dawson W. O. 1997; Transcriptional strategy of closteroviruses: mapping the 5′ termini of the citrus tristeza virus subgenomic RNAs. Journal of Virology 71:6233–6236
    [Google Scholar]
  20. Lai M. M. C. 1990; Coronavirus: organization, replication and expression of genome. Annual Review of Microbiology 44:303–333
    [Google Scholar]
  21. Lai M. M. C., Cavanagh D. 1997; The molecular biology of coronaviruses. Advances in Virus Research 48:1–100
    [Google Scholar]
  22. Lai M. M. C., Baric R. S., Brayton P. R., Stohlman S. A. 1984; Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus. Proceedings of the National Academy of Sciences, USA 81:3626–3630
    [Google Scholar]
  23. Limsuwan C. 1991 Handbook for Cultivation of Black Tiger Prawns Bangkok: Tansetakit Co. Ltd;
    [Google Scholar]
  24. Nadala E. C. B., Tapay L. M., Loh P. C. 1997; Yellow-head virus: a rhabdovirus-like pathogen of penaeid shrimp. Diseases of Aquatic Organisms 31:141–146
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Snijder E. J., Horzinek M. C. 1995; The molecular biology of toroviruses. In The Coronaviridae pp 219–238 Edited by Siddell S. G. New York: Plenum Press;
    [Google Scholar]
  27. Snijder E. J., Meulenberg J. J. M. 1998; The molecular biology of arteriviruses. Journal of General Virology 79:961–979
    [Google Scholar]
  28. Snijder E. J., Horzinek M. C., Spaan W. J. 1990; A 3′-coterminal nested set of independently transcribed mRNAs is generated during Berne virus replication. Journal of Virology 64:331–338
    [Google Scholar]
  29. Snijder E. J., Den Boon J. A., Horzinek M. C., Spaan W. J. M. 1991; Characterization of defective interfering Berne virus RNAs. Journal of General Virology 72:1635–1643
    [Google Scholar]
  30. Spaan W., Cavanagh D., Horzinek M. C. 1988; Coronaviruses: structure and genome expression. Journal of General Virology 69:2939–2952
    [Google Scholar]
  31. Spann K. M., Vickers J. E., Lester R. J. G. 1995; Lymphoid organ virus of Penaeus monodon from Australia. Diseases of Aquatic Organisms 23:127–134
    [Google Scholar]
  32. Spann K. M., Cowley J. A., Walker P. J., Lester R. J. G. 1997; A yellow-head-like virus from Penaeus monodon cultured in Australia. Diseases of Aquatic Organisms 31:169–179
    [Google Scholar]
  33. Sawicki S. G., Sawicki D. L. 1990; Coronavirus transcription: subgenomic mouse hepatitis virus replicative intermediates function in RNA synthesis. Journal of Virology 64:1050–1056
    [Google Scholar]
  34. Sawicki S. G., Sawicki D. L. 1998; A new model for coronavirus transcription. Advances in Experimental Medicine and Biology 440:215–219
    [Google Scholar]
  35. Sawicki D., Wang T., Sawicki S. 2001; The RNA structures engaged in replication and transcription of the A59 strain of mouse hepatitis virus. Journal of General Virology 82:385–396
    [Google Scholar]
  36. Thiel V., Siddell S. 1995; Translation of the MHV sM protein is mediated by the internal entry of ribosomes on mRNA 5. Advances in Experimental Medicine and Biology 380:311–315
    [Google Scholar]
  37. van der Most R. G., Spaan W. J. M. 1995; Coronavirus replication, transcription, and RNA recombination. In The Coronaviridae pp 11–31 Edited by Siddell S. G. New York: Plenum Press;
    [Google Scholar]
  38. van Marle G., Dobbe J. C., Gultyaev A. P., Luytjes W., Spaan W. J. M., Snijder E. J. 1999; Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proceedings of the National Academy of Sciences, USA 96:12056–12061
    [Google Scholar]
  39. Walker P. J., Wang Y., Cowley J. A., McWilliam S. M., Prehaud C. J. N. 1994; Structural and antigenic analysis of the nucleoprotein of bovine ephemeral fever rhabdovirus. Journal of General Virology 75:1889–1899
    [Google Scholar]
  40. Walker P. J., Cowley J. A., Spann K. M., Hodgson R. A. J., Hall M. R., Withyachumnarnkul B. 2001; Yellow head complex viruses: transmission cycles and topographical distribution in the Asia–Pacific region. In The New Wave: Proceedings of the Special Session on Sustainable Shrimp Culture, Aquaculture 2001 pp 227–237 Edited by Browdy C. L., Jory D. E. Baton Rouge, LA: The World Aquaculture Society;
    [Google Scholar]
  41. Wang Y.-C., Chang P.-S. 2000; Yellow head virus infection in the giant tiger prawn Penaeus monodon cultured in Taiwan. Fish Pathology 35:1–10
    [Google Scholar]
  42. Wongteerasupaya C., Sriurairatana S., Vickers J. E., Akrajamorn A., Boonsaeng V., Panyim S., Tassanakajon A., Withyachumnarnkul B., Flegel T. W. 1995; Yellow-head virus of Penaeus monodon is an RNA virus. Diseases of Aquatic Organisms 22:45–50
    [Google Scholar]
  43. Yang G., Mawassi M., Gofman R., Gafny R., Bar-Joseph M. 1997; Involvement of a subgenomic mRNA in the generation of a variable population of defective citrus tristeza virus molecules. Journal of Virology 12:9800–9802
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-4-927
Loading
/content/journal/jgv/10.1099/0022-1317-83-4-927
Loading

Data & Media loading...

Most cited Most Cited RSS feed