1887

Abstract

Cowpea mosaic virus (CPMV) replication occurs in close association with small membranous vesicles in the host cell. The CPMV RNA1-encoded 60 kDa nucleotide-binding protein (‘60K’) plays a role in the formation of these vesicles. In this study, five cellular proteins were identified that interacted with different domains of 60K using a yeast two-hybrid search of an cDNA library. Two of these host proteins (termed VAP27-1 and VAP27-2), with high homology to the VAP33 family of SNARE-like proteins from animals, interacted specifically with the C-terminal domain of 60K and upon transient expression colocalized with 60K in CPMV-infected cowpea protoplasts. eEF1-β, picked up using the central domain of 60K, was also found to colocalize with 60K. The possible role of these host proteins in the viral replicative cycle is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-4-885
2002-04-01
2020-07-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/4/0830885a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-4-885&mimeType=html&fmt=ahah

References

  1. Argos P., Kamer G., Nicklin M. J., Wimmer E.. 1984; Similarity in gene organization and homology between proteins of animal picornaviruses and a plant comovirus suggest common ancestry of these virus families. Nucleic Acids Research12:7251–7267
    [Google Scholar]
  2. Barco A., Carrasco L.. 1995; A human virus protein, poliovirus protein 2BC, induces membrane proliferation and blocks the exocytic pathway in the yeast Saccharomyces cerevisiae . EMBO Journal14:3349–3364
    [Google Scholar]
  3. Blumenthal T.. 1980; Interaction of host-coded and virus-coded polypeptides in RNA phage replication. Proceedings of the Royal Society of London B Biological Sciences210:321–335
    [Google Scholar]
  4. Burkhard P., Stetefeld J., Strelkov S. V.. 2001; Coiled coils: a highly versatile protein folding motif. Trends in Cell Biology11:82–88
    [Google Scholar]
  5. Carette J. E., Stuiver M., Van Lent J., Wellink J., Van Kammen A.. 2000; Cowpea mosaic virus infection induces a massive proliferation of endoplasmic reticulum but not Golgi membranes and is dependent on de novo membrane synthesis. Journal of Virology74:6556–6563
    [Google Scholar]
  6. Cho M. W., Teterina N., Egger D., Bienz K., Ehrenfeld E.. 1994; Membrane rearrangement and vesicle induction by recombinant poliovirus 2C and 2BC in human cells. Virology202:129–145
    [Google Scholar]
  7. Das T., Mathur M., Gupta A. K., Janssen G. M., Banerjee A. K.. 1998; RNA polymerase of vesicular stomatitis virus specifically associates with translation elongation factor-1 alphabetagamma for its activity. Proceedings of the National Academy of Sciences, USA95:1449–1454
    [Google Scholar]
  8. De Zoeten G. A., Assink A. M., Van Kammen A.. 1974; Association of cowpea mosaic virus-induced double-stranded RNA with a cytopathological structure in infected cells. Virology59:341–355
    [Google Scholar]
  9. Eggen R., Kaan A., Goldbach R., Van Kammen A.. 1988; Cowpea mosaic virus RNA replication in crude membrane fractions from infected cowpea and Chenopodium armaranticolor . Journal of General Virology69:2711–2720
    [Google Scholar]
  10. Fields S., Sternglanz R.. 1994; The two-hybrid system: an assay for protein–protein interactions. Trends in Genetics10:286–292
    [Google Scholar]
  11. Franssen H., Leunissen J., Goldbach R., Lomonossoff G., Zimmern D.. 1984; Homologous sequences in non-structural proteins from cowpea mosaic virus and picornaviruses. EMBO Journal3:855–861
    [Google Scholar]
  12. Gidekel M., Jimenez B., Herrera-Estrella L.. 1996; The first intron of the Arabidopsis thaliana gene coding for elongation factor 1 beta contains an enhancer-like element. Gene170:201–206
    [Google Scholar]
  13. Gopinath K., Wellink J., Porta C., Taylor K. M., Lomonossoff G. P., van Kammen A.. 2000; Engineering cowpea mosaic virus RNA-2 into a vector to express heterologous proteins in plants. Virology267:159–73
    [Google Scholar]
  14. Gorbalenya A. E., Koonin E. V., Wolf Y. I.. 1990; A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Letters262:145–148
    [Google Scholar]
  15. Haizel T., Merkle T., Pay A., Fejes E., Nagy F.. 1997; Characterization of proteins that interact with the GTP-bound form of the regulatory GTPase Ran in Arabidopsis . Plant Journal11:93–103
    [Google Scholar]
  16. Harris K. S., Xiang W., Alexander L., Lane W. S., Paul A. V., Wimmer E.. 1994; Interaction of poliovirus polypeptide 3CDpro with the 5′ and 3′ termini of the poliovirus genome. Identification of viral and cellular cofactors needed for efficient binding. Journal of Biological Chemistry269:27004–27014
    [Google Scholar]
  17. Haseloff J., Siemering K. R., Prasher D. C., Hodge S.. 1997; Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proceedings of the National Academy of Sciences, USA94:2122–2127
    [Google Scholar]
  18. James P., Halladay J., Craig E. A.. 1996; Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics144:1425–1436
    [Google Scholar]
  19. Jespersen H. M., Kjaersgard I. V., Ostergaard L., Welinder K. G.. 1997; From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochemical Journal326:305–310
    [Google Scholar]
  20. Kagiwada S., Hosaka K., Murata M., Nikawa J., Takatsuki A.. 1998; The Saccharomyces cerevisiae SCS2 gene product, a homolog of a synaptobrevin-associated protein, is an integral membrane protein of the endoplasmic reticulum and is required for inositol metabolism. Journal of Bacteriology180:1700–1708
    [Google Scholar]
  21. Laage R., Rohde J., Brosig B., Langosch D.. 2000; A conserved membrane-spanning amino acid motif drives homomeric and supports heteromeric assembly of presynaptic SNARE proteins. Journal of Biological Chemistry275:17481–17487
    [Google Scholar]
  22. Lapierre L. A., Tuma P. L., Navarre J., Goldenring J. R., Anderson J. M.. 1999; VAP-33 localizes to both an intracellular vesicle population and with occludin at the tight junction. Journal of Cell Science112:3723–3732
    [Google Scholar]
  23. Laurent F., Labesse G., de Wit P.. 2000; Molecular cloning and partial characterization of a plant VAP33 homologue with a major sperm protein domain. Biochemical and Biophysical Research Communications270:286–292
    [Google Scholar]
  24. Louvet O., Doignon F., Crouzet M.. 1997; Stable DNA-binding yeast vector allowing high-bait expression for use in the two-hybrid system. Biotechniques23: 816–818, 820
    [Google Scholar]
  25. Maurel C., Reizer J., Schroeder J. I., Chrispeels M. J.. 1993; The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes. EMBO Journal12:2241–2247
    [Google Scholar]
  26. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Minella O., Mulner-Lorillon O., De Smedt V., Hourdez S., Cormier P., Belle R.. 1996; Major intracellular localization of elongation factor-1. Cell and Molecular Biology42:805–810
    [Google Scholar]
  28. Paul A. V., van Boom J. H., Filippov D., Wimmer E.. 1998; Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature393:280–284
    [Google Scholar]
  29. Peters S. A., Verver J., Nollen E. A., van Lent J. W., Wellink J., van Kammen A.. 1994; The NTP-binding motif in cowpea mosaic virus B polyprotein is essential for viral replication. Journal of General Virology75:3167–3176
    [Google Scholar]
  30. Pih K. T., Kabilan V., Lim J. H., Kang S. G., Piao H. L., Jin J. B., Hwang I.. 1999; Characterization of two new channel protein genes in Arabidopsis . Molecules and Cells9:84–90
    [Google Scholar]
  31. Rottier P. J., Rezelman G., van Kammen A.. 1979; The inhibition of cowpea mosaic virus replication by actinomycin D. Virology92:299–309
    [Google Scholar]
  32. Sanderfoot A. A., Assaad F. F., Raikhel N. V.. 2000; The Arabidopsis genome. An abundance of soluble N -ethylmaleimide-sensitive factor adaptor protein receptors. Plant Physiology124:1558–1569
    [Google Scholar]
  33. Sanders J., Brandsma M., Janssen G. M., Dijk J., Moller W.. 1996; Immunofluorescence studies of human fibroblasts demonstrate the presence of the complex of elongation factor-1 beta gamma delta in the endoplasmic reticulum. Journal of Cell Science109:1113–1117
    [Google Scholar]
  34. Sansom M. S., Law R. J.. 2001; Membrane proteins: aquaporins – channels without ions. Current Biology11:R71–73
    [Google Scholar]
  35. Serebriiskii I., Estojak J., Berman M., Golemis E. A.. 2000; Approaches to detecting false positives in yeast two-hybrid systems. Biotechniques28: 328–330, 332–336
    [Google Scholar]
  36. Skehel P. A., Martin K. C., Kandel E. R., Bartsch D.. 1995; A VAMP-binding protein from Aplysia required for neurotransmitter release. Science269:1580–1583
    [Google Scholar]
  37. Skehel P. A., Fabian-Fine R., Kandel E. R.. 2000; Mouse VAP33 is associated with the endoplasmic reticulum and microtubules. Proceedings of the National Academy of Sciences, USA97:1101–1106
    [Google Scholar]
  38. Smirnoff N.. 2000; Ascorbic acid: metabolism and functions of a multi-facetted molecule. Current Opinion in Plant Biology3:229–35
    [Google Scholar]
  39. Takegami T., Kuhn R. J., Anderson C. W., Wimmer E.. 1983; Membrane-dependent uridylylation of the genome-linked protein VPg of poliovirus. Proceedings of the National Academy of Sciences, USA80:7447–7451
    [Google Scholar]
  40. Tu H., Gao L., Shi S. T., Taylor D. R., Yang T., Mircheff A. K., Wen Y., Gorbalenya A. E., Hwang S. B., Lai M. M.. 1999; Hepatitis C virus RNA polymerase and NS5A complex with a SNARE-like protein. Virology263:30–41
    [Google Scholar]
  41. van Bokhoven H., van Lent J. W., Custers R., Vlak J. M., Wellink J., van Kammen A.. 1992; Synthesis of the complete 200K polyprotein encoded by cowpea mosaic virus B-RNA in insect cells. Journal of General Virology73:2775–2784
    [Google Scholar]
  42. van Bokhoven H., Verver J., Wellink J., van Kammen A.. 1993; Protoplasts transiently expressing the 200K coding sequence of cowpea mosaic virus B-RNA support replication of M-RNA. Journal of General Virology74:2233–2241
    [Google Scholar]
  43. Van Der Heijden M. W., Carette J. E., Reinhoud P. J., Haegi A., Bol J. F.. 2001; Alfalfa mosaic virus replicase proteins P1 and P2 interact and colocalize at the vacuolar membrane. Journal of Virology75:1879–1887
    [Google Scholar]
  44. Weir M. L., Klip A., Trimble W. S.. 1998; Identification of a human homologue of the vesicle-associated membrane protein (VAMP)-associated protein of 33 kDa (VAP-33): a broadly expressed protein that binds to VAMP. Biochemical Journal333:247–251
    [Google Scholar]
  45. Weir M. L., Xie H., Klip A., Trimble W. S.. 2001; VAP-A binds promiscuously to both v- and tSNAREs. Biochemical and Biophysical Research Communications286:616–621
    [Google Scholar]
  46. Wellink J., Van Lent J., Goldbach R.. 1988; Detection of viral proteins in cytopathic structures in cowpea protoplasts infected with cowpea mosaic virus. Journal of General Virology69:751–755
    [Google Scholar]
  47. Wellink J., van Lent J. W., Verver J., Sijen T., Goldbach R. W., van Kammen A.. 1993; The cowpea mosaic virus M RNA-encoded 48-kilodalton protein is responsible for induction of tubular structures in protoplasts. Journal of Virology67:3660–3664
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-4-885
Loading
/content/journal/jgv/10.1099/0022-1317-83-4-885
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error