1887

Abstract

Camelpox virus (CMPV) and variola virus (VAR) are orthopoxviruses (OPVs) that share several biological features and cause high mortality and morbidity in their single host species. The sequence of a virulent CMPV strain was determined; it is 202182 bp long, with inverted terminal repeats (ITRs) of 6045 bp and has 206 predicted open reading frames (ORFs). As for other poxviruses, the genes are tightly packed with little non-coding sequence. Most genes within 25 kb of each terminus are transcribed outwards towards the terminus, whereas genes within the centre of the genome are transcribed from either DNA strand. The central region of the genome contains genes that are highly conserved in other OPVs and 87 of these are conserved in all sequenced chordopoxviruses. In contrast, genes towards either terminus are more variable and encode proteins involved in host range, virulence or immunomodulation. In some cases, these are broken versions of genes found in other OPVs. The relationship of CMPV to other OPVs was analysed by comparisons of DNA and predicted protein sequences, repeats within the ITRs and arrangement of ORFs within the terminal regions. Each comparison gave the same conclusion: CMPV is the closest known virus to variola virus, the cause of smallpox.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-4-855
2002-04-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/4/0830855a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-4-855&mimeType=html&fmt=ahah

References

  1. Afonso, C. L., Tulman, E. R., Lu, Z., Zsak, L., Kutish, G. F. & Rock, D. L. ( 2000; ). The genome of fowlpox virus. Journal of Virology 74, 3815-3831.[CrossRef]
    [Google Scholar]
  2. Aguado, B., Selmes, I. P. & Smith, G. L. ( 1992; ). Nucleotide sequence of 21·8 kbp of variola major virus strain Harvey and comparison with vaccinia virus. Journal of General Virology 73, 2887-2902.[CrossRef]
    [Google Scholar]
  3. Alcamı́, A. & Smith, G. L. ( 1995; ). Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. Journal of Virology 69, 4633-4639.
    [Google Scholar]
  4. Alcamı́, A., Symons, J. A., Collins, P. D., Williams, T. J. & Smith, G. L. ( 1998a; ). Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus. Journal of Immunology 160, 624-633.
    [Google Scholar]
  5. Alcamı́, A., Symons, J. A., Khanna, A. & Smith, G. L. ( 1998b; ). Poxviruses: capturing cytokines and chemokines. Seminars in Virology 8, 419-427.[CrossRef]
    [Google Scholar]
  6. Alcamı́, A., Khanna, A., Paul, N. L. & Smith, G. L. ( 1999; ). Vaccinia virus strains Lister, USSR and Evans express soluble and cell surface tumour necrosis factors receptor. Journal of General Virology 80, 949-959.
    [Google Scholar]
  7. Almazán, F., Tscharke, D. C. & Smith, G. L. ( 2001; ). The vaccinia virus superoxide dismutase-like protein (A45R) is a virion component that is nonessential for virus replication. Journal of Virology 75, 7018-7029.[CrossRef]
    [Google Scholar]
  8. Amegadzie, B. Y., Ahn, B. Y. & Moss, B. ( 1992; ). Characterization of a 7-kilodalton subunit of vaccinia virus DNA-dependent RNA polymerase with structural similarities to the smallest subunit of eukaryotic RNA polymerase II. Journal of Virology 66, 3003-3010.
    [Google Scholar]
  9. Antoine, G., Scheiflinger, F., Dorner, F. & Falkner, F. G. ( 1998; ). The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244, 365-396.[CrossRef]
    [Google Scholar]
  10. Bankier, A. T., Weston, K. M. & Barrell, B. G. ( 1987; ). Random cloning and sequencing by the M13/dideoxynucleotide chain termination method. Methods in Enzymology 155, 51-93.
    [Google Scholar]
  11. Baxby, D. (1972). Smallpox-like viruses from camels in Iran. Lancet ii, 1063–1065.
  12. Baxby, D. ( 1974; ). Differentiation of smallpox and camelpox viruses in cultures of human and monkey cells. Journal of Hygiene (London) 72, 251-254.[CrossRef]
    [Google Scholar]
  13. Baxby, D. (1981). Jenner’s Smallpox Vaccine. The Riddle of the Origin of Vaccinia Virus. London: Heinemann.
  14. Baxby, D., Hessami, M., Ghaboosi, B. & Ramyar, H. ( 1975; ). Response of camels to intradermal inoculation with smallpox and camelpox viruses. Infection and Immunity 11, 617-621.
    [Google Scholar]
  15. Bedson, H. S. (1972). Camelpox and smallpox. Lancet ii, 1253.
  16. Betakova, T., Wolffe, E. J. & Moss, B. ( 2000; ). The vaccinia virus A14.5L gene encodes a hydrophobic 53-amino-acid virion membrane protein that enhances virulence in mice and is conserved among vertebrate poxviruses. Journal of Virology 74, 4085-4092.[CrossRef]
    [Google Scholar]
  17. Binns, M. ( 1992; ). Analysis of the camelpox virus thymidine kinase gene. British Veterinary Journal 148, 541-546.[CrossRef]
    [Google Scholar]
  18. Blomquist, M. C., Hunt, L. T. & Barker, W. C. ( 1984; ). Vaccinia virus 19-kilodalton protein: relationship to several mammalian proteins, including two growth factors. Proceedings of the National Academy of Sciences, USA 81, 7363-7367.[CrossRef]
    [Google Scholar]
  19. Bonfield, J. K. & Staden, R. ( 1996; ). Experiment files and their application during large-scale sequencing projects. DNA Sequence 6, 109-117.
    [Google Scholar]
  20. Bonfield, J. K., Smith, K. & Staden, R. ( 1995; ). A new DNA sequence assembly program. Nucleic Acids Research 23, 4992-4999.[CrossRef]
    [Google Scholar]
  21. Bowie, A., Kiss-Toth, E., Symons, J. A., Smith, G. L., Dower, S. K. & O’Neill, L. A. ( 2000; ). A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proceedings of the National Academy of Sciences, USA 97, 10162-10167.[CrossRef]
    [Google Scholar]
  22. Cameron, C., Hota-Mitchell, S., Chen, L., Barrett, J., Cao, J. X., Macaulay, C., Willer, D., Evans, D. & McFadden, G. ( 1999; ). The complete DNA sequence of myxoma virus. Virology 264, 298-318.[CrossRef]
    [Google Scholar]
  23. Chen, N., Buller, R. M., Wall, M. & Upton, C. ( 2000; ). Analysis of host response modifier ORFs of ectromelia virus, the causative agent of mousepox. Virus Research 66, 155-173.[CrossRef]
    [Google Scholar]
  24. DeFilippes, F. M. ( 1982; ). Restriction enzyme mapping of vaccinia virus DNA. Journal of Virology 43, 136-149.
    [Google Scholar]
  25. DeLange, A. M., Reddy, M., Scraba, D., Upton, C. & McFadden, G. ( 1986; ). Replication and resolution of cloned poxvirus telomeres in vivo generates linear minichromosomes with intact viral hairpin termini. Journal of Virology 59, 249-259.
    [Google Scholar]
  26. Devereux, J., Haeberli, P. & Smithies, O. ( 1984; ). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12, 387-395.[CrossRef]
    [Google Scholar]
  27. Douglass, N. J. & Dumbell, K. R. ( 1996; ). DNA sequence variation as a clue to the phylogenesis of orthopoxviruses. Journal of General Virology 77, 947-951.[CrossRef]
    [Google Scholar]
  28. Esposito, J. J. & Knight, J. C. ( 1985; ). Orthopoxvirus DNA: a comparison of restriction profiles and maps. Virology 143, 230-251.[CrossRef]
    [Google Scholar]
  29. Esposito, J. R., Condit, R. C. & Obijeski, J. ( 1981; ). The preparation of orthopoxvirus DNA. Journal of Virological Methods 2, 175-179.[CrossRef]
    [Google Scholar]
  30. Ewing, B. & Green, P. ( 1998; ). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Research 8, 186-194.
    [Google Scholar]
  31. Ewing, B., Hillier, L., Wendl, M. C. & Green, P. ( 1998; ). Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Research 8, 175-185.[CrossRef]
    [Google Scholar]
  32. Felsenstein, J. ( 1989; ). PHYLIP–Phylogeny Inference Package (Version 3.2). Cladistics 5, 164-166.
    [Google Scholar]
  33. Fenner, F., Anderson, D. A., Arita, I., Jezek, Z. & Ladnyi, I. D. (1988). Smallpox and its Eradication. Geneva: World Health Organization.
  34. Fenner, F., Wittek, R. & Dumbell, K. R. (1989). The Orthopoxviruses, chapter 4. London: Academic Press.
  35. Gardner, J. D., Tscharke, D. C., Reading, P. C. & Smith, G. L. ( 2001; ). Vaccinia virus semaphorin A39R is a 50–55 kDa secreted glycoprotein that affects the outcome of infection in a murine intradermal model. Journal of General Virology 82, 2083-2093.
    [Google Scholar]
  36. Goebel, S. J., Johnson, G. P., Perkus, M. E., Davis, S. W., Winslow, J. P. & Paoletti, E. ( 1990; ). The complete DNA sequence of vaccinia virus. Virology 179, 247-266.[CrossRef]
    [Google Scholar]
  37. Huelsenbeck, J. P. & Bull, J. J. ( 1996; ). A likelihood ratio test to detect conflicting phylogenetic signal. Systematic Biology 45, 92-98.[CrossRef]
    [Google Scholar]
  38. Jackson, R. J., Ramsay, A. J., Christensen, C. D., Beaton, S., Hall, D. F. & Ramshaw, I. A. ( 2001; ). Expression of mouse IL-4 by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. Journal of Virology 75, 1205-1210.[CrossRef]
    [Google Scholar]
  39. Jezek, Z., Kriz, B. & Rothbauer, V. ( 1983; ). Camelpox and its risk to the human population. Journal of Hygiene Epidemiology Microbiology and Immunology 27, 29-42.
    [Google Scholar]
  40. Johnson, G. P., Goebel, S. J. & Paoletti, E. ( 1993; ). An update on the vaccinia virus genome. Virology 196, 381-401.[CrossRef]
    [Google Scholar]
  41. Kawai, M., Pan, L., Reed, J. C. & Uchimiya, H. ( 1999; ). Evolutionally conserved plant homologue of the Bax inhibitor-1 (BI-1) gene capable of suppressing Bax-induced cell death in yeast(1). FEBS Letters 464, 143-147.[CrossRef]
    [Google Scholar]
  42. Kotwal, G. J., Isaacs, S. N., McKenzie, R., Frank, M. M. & Moss, B. ( 1990; ). Inhibition of the complement cascade by the major secretory protein of vaccinia virus. Science 250, 827-830.[CrossRef]
    [Google Scholar]
  43. Kumar, K. N., Tilakaratne, N., Johnson, P. S., Allen, A. E. & Michaelis, E. K. ( 1991; ). Cloning of cDNA for the glutamate-binding subunit of an NMDA receptor complex. Nature 354, 70-73.[CrossRef]
    [Google Scholar]
  44. Lee, H.-J., Essani, K. & Smith, G. L. ( 2001; ). The genome sequence of Yaba-like disease virus, a yatapoxvirus. Virology 281, 170-192.[CrossRef]
    [Google Scholar]
  45. McGrane, J. J. & Higgins, A. J. ( 1986; ). Infectious diseases of the camel: viruses, bacteria and fungi. In The Camel in Health and Disease , pp. 92-110. Edited by A. J. Higgins. London:Ballière Tindall.
  46. Mackett, M. & Archard, L. C. ( 1979; ). Conservation and variation in orthopoxvirus genome structure. Journal of General Virology 45, 683-701.[CrossRef]
    [Google Scholar]
  47. Mackett, M., Smith, G. L. & Moss, B. ( 1985; ). The construction and characterization of vaccinia virus recombinants expressing foreign genes. In DNA Cloning: a Practical Approach , pp. 191-211. Edited by D. M. Glover. Oxford:IRL Press.
  48. Massung, R. F., Esposito, J. J., Liu, L.-I., Qi, J., Utterback, T. R., Knight, J. C., Aubin, L., Yuran, T. E., Parsons, J. M., Loparev, V. N., Selivanov, N. A., Cavallaro, K. F., Kerlavage, A. R., Mahy, B. W. J. & Venter, A. J. ( 1993a; ). Potential virulence determinants in terminal regions of variola smallpox virus genome. Nature 366, 748-751.[CrossRef]
    [Google Scholar]
  49. Massung, R. F., Jayarama, V. & Moyer, R. W. ( 1993b; ). DNA sequence analysis of conserved and unique regions of swinepox: identification of genetic elements supporting phenotypic observations including a novel G protein-coupled receptor homologue. Virology 197, 511-528.[CrossRef]
    [Google Scholar]
  50. Massung, R. F., Liu, L. I., Qi, J., Knight, J. C., Yuran, T. E., Kerlavage, A. R., Parsons, J. M., Venter, J. C. & Esposito, J. J. ( 1994; ). Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975. Virology 201, 215-240.[CrossRef]
    [Google Scholar]
  51. Massung, R. F., Knight, J. C. & Esposito, J. J. ( 1995; ). Topography of variola smallpox virus inverted terminal repeats. Virology 211, 350-355.[CrossRef]
    [Google Scholar]
  52. Mathew, E. C., Sanderson, C. M., Hollinshead, R. & Smith, G. L. ( 2001; ). A mutational analysis of the vaccinia virus B5R protein. Journal of General Virology 82, 1199-1213.
    [Google Scholar]
  53. Merchlinsky, M. & Moss, B. ( 1986; ). Resolution of linear minichromosomes with hairpin ends from circular plasmids containing vaccinia virus concatemer junctions. Cell 45, 879-884.[CrossRef]
    [Google Scholar]
  54. Meyer, H. & Rziha, H. J. ( 1993; ). Characterization of the gene encoding the A-type inclusion protein of camelpox virus and sequence comparison with other orthopoxviruses. Journal of General Virology 74, 1679-1684.[CrossRef]
    [Google Scholar]
  55. Moss, B. ( 1996; ). Poxviridae: the viruses and their replication. In Fields Virology , pp. 2637-2671. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia:Lippincott–Raven.
  56. Moss, B. ( 2001; ). Poxviridae: the viruses and their replication. In Fields Virology , pp. 2849-2883. Edited by D. M. Knipe & P. M. Howley. Philadelphia:Lippincott Williams & Wilkins.
  57. Moyer, R. W. & Graves, R. L. ( 1981; ). The mechanism of cytoplasmic orthopoxvirus DNA replication. Cell 27, 391-401.[CrossRef]
    [Google Scholar]
  58. Müller, T. & Vingron, M. ( 2000; ). Modeling amino acid replacement. Journal of Comparative Biology 7, 761-776.[CrossRef]
    [Google Scholar]
  59. Ng, A., Tscharke, D. C., Reading, P. C. & Smith, G. L. ( 2001; ). The vaccinia virus A41L protein is a soluble 30 kDa glycoprotein that affects virus virulence. Journal of General Virology 82, 2095-2105.
    [Google Scholar]
  60. Nicholas, K. B. & Nicholas, H. B. (1997). GeneDoc: a tool for editing and annotating multiple sequence alignments, 2.5.000 edn. Distributed by the authors.
  61. Page, R. D. ( 1996; ). TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357-358.
    [Google Scholar]
  62. Parsons, B. L. & Pickup, D. J. ( 1987; ). Tandemly repeated sequences are present at the ends of the DNA of raccoonpox virus. Virology 161, 45-53.[CrossRef]
    [Google Scholar]
  63. Perkus, M. E., Goebel, S. J., Davis, S. W., Johnson, G. P., Norton, E. K. & Paoletti, E. ( 1991; ). Deletion of 55 open reading frames from the termini of vaccinia virus. Virology 180, 406-410.[CrossRef]
    [Google Scholar]
  64. Pfeffer, M., Meyer, H., Wernery, U. & Kaaden, O. R. ( 1996; ). Comparison of camelpox viruses isolated in Dubai. Veterinary Microbiology 49, 135-146.[CrossRef]
    [Google Scholar]
  65. Price, N., Tscharke, D. C., Hollinshead, M. & Smith, G. L. ( 2000; ). Vaccinia virus gene B7R encodes an 18-kDa protein that is resident in the endoplasmic reticulum and affects virus virulence. Virology 267, 65-79.[CrossRef]
    [Google Scholar]
  66. Saraiva, M. & Alcamı́, A. ( 2001; ). CrmE, a novel soluble tumor necrosis factor receptor encoded by poxviruses. Journal of Virology 75, 226-233.[CrossRef]
    [Google Scholar]
  67. Schwarz, D. A., Katayama, C. D. & Hedrick, S. M. ( 1998; ). Schlafen, a new family of growth regulatory genes that affect thymocyte development. Immunity 9, 657-668.[CrossRef]
    [Google Scholar]
  68. Senkevich, T. G., Koonin, E. V., Bugert, J. J., Darai, G. & Moss, B. ( 1997; ). The genome of molluscum contagiosum virus: analysis and comparison with other poxviruses. Virology 233, 19-42.[CrossRef]
    [Google Scholar]
  69. Shchelkunov, S. N., Massung, R. F. & Esposito, J. J. ( 1995; ). Comparison of the genome DNA sequences of Bangladesh-1975 and India-1967 variola viruses. Virus Research 36, 107-118.[CrossRef]
    [Google Scholar]
  70. Shchelkunov, S. N., Safronov, P. F., Totmenin, A. V., Petrov, N. A., Ryazankina, O. I., Gutorov, V. V. & Kotwal, G. J. ( 1998; ). The genomic sequence analysis of the left and right species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins. Virology 243, 432-460.[CrossRef]
    [Google Scholar]
  71. Shchelkunov, S. N., Totmenin, A. V., Loparev, V. N., Safronov, P. F., Gutorov, V. V., Chizhikov, V. E., Knight, J. C., Parsons, J. M., Massung, R. F. & Esposito, J. J. ( 2000; ). Alastrim smallpox variola minor virus genome DNA sequences. Virology 266, 361-386.[CrossRef]
    [Google Scholar]
  72. Smith, G. L., Chan, Y. S. & Howard, S. T. ( 1991; ). Nucleotide sequence of 42 kbp of vaccinia virus strain WR from near the right inverted terminal repeat. Journal of General Virology 72, 1349-1376.[CrossRef]
    [Google Scholar]
  73. Smith, G. L., Symons, J. A. & Alcamı́, A. ( 1998; ). Poxviruses; interfering with interferon. Seminars in Virology 8, 409-418.[CrossRef]
    [Google Scholar]
  74. Sonnhammer, E. L. & Durbin, R. ( 1995; ). A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167, GC1-10.[CrossRef]
    [Google Scholar]
  75. Staden, R. & McLachlan, A. D. ( 1982; ). Codon preference and its use in identifying protein coding regions in long DNA sequences. Nucleic Acids Research 10, 141-156.[CrossRef]
    [Google Scholar]
  76. Strimmer, K. & von Haeseler, A. ( 1996; ). Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Molecular Biology and Evolution 13, 964-969.[CrossRef]
    [Google Scholar]
  77. Strimmer, K. & von Haeseler, A. ( 1997; ). Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proceedings of the National Academy of Sciences, USA 94, 6815-6819.[CrossRef]
    [Google Scholar]
  78. Symons, J. A., Alcamı́, A. & Smith, G. L. ( 1995; ). Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 81, 551-560.[CrossRef]
    [Google Scholar]
  79. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). Improved sensitivity of profile searches through the use of sequence weights and gap excision. Computer Applications in the Biosciences 10, 19-29.
    [Google Scholar]
  80. Tulman, E. R., Afonso, C. L., Lu, Z., Zsak, L., Kutish, G. F. & Rock, D. L. ( 2001; ). Genome of lumpy skin disease virus. Journal of Virology 75, 7122-7130.[CrossRef]
    [Google Scholar]
  81. Turner, P. C., Musy, P. Y. & Moyer, R. W. ( 1995; ). Poxvirus serpins. In Viroceptors, Virokines and Related Immune Modulators Encoded by DNA Viruses , pp. 67-88. Edited by G. McFadden. Austin:R. G. Landes.
  82. van Eijl, H., Hollinshead, M., Rodger, G., Zhang, W.-H. & Smith, G. L. ( 2002; ). The vaccinia virus F12L protein is associated with intracellular enveloped virus particles and is required for their egress to the cell surface. Journal of General Virology 83, 195-207.
    [Google Scholar]
  83. Walter, L., Marynen, P., Szpirer, J., Levan, G. & Gunther, E. ( 1995; ). Identification of a novel conserved human gene, TEGT. Genomics 28, 301-304.[CrossRef]
    [Google Scholar]
  84. Willer, D. O., McFadden, G. & Evans, D. H. ( 1999; ). The complete genome sequence of Shope (rabbit) fibroma virus. Virology 264, 319-343.[CrossRef]
    [Google Scholar]
  85. Xu, Q. & Reed, J. C. ( 1998; ). Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Molecular Cell 1, 337-346.[CrossRef]
    [Google Scholar]
  86. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103-119.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-4-855
Loading
/content/journal/jgv/10.1099/0022-1317-83-4-855
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error