Nuclear localization of non-structural protein 1 and nucleocapsid protein of equine arteritis virus Free

Abstract

RNA synthesis (genome replication and subgenomic mRNA transcription) directed by equine arteritis virus (EAV; family , order ) occurs on modified cytoplasmic membranes to which most viral replicase subunits localize. Remarkably, a fraction of non-structural protein 1 (nsp1), a protein essential for transcription but dispensable for genome replication, is present in the host cell nucleus, in particular during the earlier stages of infection. Expression of GFP-tagged fusion proteins revealed that nsp1 is actively imported into the nucleus. Although the signals responsible for nsp1 transport could not be identified, our studies revealed that another EAV protein with a partially nuclear localization, the nucleocapsid (N) protein, utilizes the CRM1-mediated nuclear export pathway. Inactivation of this pathway with the drug leptomycin B resulted in the unexpected and immediate nuclear retention of all N protein molecules, thus revealing that the protein shuttles between cytoplasm and nucleus before playing its role in cytoplasmic virus assembly.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-4-795
2002-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/4/0830795a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-4-795&mimeType=html&fmt=ahah

References

  1. Carette J. E., Stuiver M., Van Lent J., Wellink J., Van Kammen A. 2000; Cowpea mosaic virus infection induces a massive proliferation of endoplasmic reticulum but not Golgi membranes and is dependent on de novo membrane synthesis. Journal of Virology 74:6556–6563
    [Google Scholar]
  2. Chen J., Ahlquist P. 2000; Brome mosaic virus polymerase-like protein 2a is directed to the endoplasmic reticulum by helicase-like viral protein 1a. Journal of Virology 74:4310–4318
    [Google Scholar]
  3. den Boon J. A., Faaberg K. S., Meulenberg J. J. M., Wassenaar A. L. M., Plagemann P. G. W., Gorbalenya A. E., Snijder E. J. 1995; Processing and evolution of the N-terminal region of the arterivirus replicase ORF1a protein: identification of two papainlike cysteine proteases. Journal of Virology 69:4500–4505
    [Google Scholar]
  4. Elfgang C., Rosorius O., Hofer L., Jaksche H., Hauber J., Bevec D. 1999; Evidence for specific nucleocytoplasmic transport pathways used by leucine-rich nuclear export signals. Proceeding of the National Academy of Sciences, USA 96:6229–6234
    [Google Scholar]
  5. Gorlich D. 1998; Transport into and out of the cell nucleus. EMBO Journal 17:2721–2727
    [Google Scholar]
  6. Hiscox J. A., Wurm T., Wilson L., Britton P., Cavanagh D., Brooks G. 2001; The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. Journal of Virology 75:506–512
    [Google Scholar]
  7. Kudo N., Matsumori N., Taoka H., Fujiwara D., Schreiner E. P., Wolff B., Yoshida M., Horinouchi S. 1999; Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proceeding of the National Academy of Sciences, USA 96:9112–9117
    [Google Scholar]
  8. Kujala P., Ikaheimonen A., Ehsani N., Vihinen H., Auvinen P., Kaariainen L. 2001; Biogenesis of the Semliki Forest virus RNA replication complex. Journal of Virology 75:3873–3884
    [Google Scholar]
  9. Mackenzie J. M., Khromykh A. A., Westaway E. G. 2001; Stable expression of noncytopathic Kunjin replicons simulates both ultrastructural and biochemical characteristics observed during replication of Kunjin virus. Virology 279:161–172
    [Google Scholar]
  10. MacLachlan N. J., Balasuriya U. B., Hedges J. F., Schweidler T. M., McCollum W. H., Timoney P. J., Hullinger P. J., Patton J. F. 1998; Serologic response of horses to the structural proteins of equine arteritis virus. Journal of Veterinary Diagnostic Investigation 10:229–236
    [Google Scholar]
  11. Molenkamp R., van Tol H., Rozier B. C. D., van der Meer Y., Spaan W. J. M., Snijder E. J. 2000; The arterivirus replicase is the only viral protein required for genome replication and subgenomic mRNA transcription. Journal of General Virology 81:2491–2496
    [Google Scholar]
  12. Nigg E. A. 1997; Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386:779–787
    [Google Scholar]
  13. Nishi K., Yoshida M., Fujiwara D., Nishikawa M., Horinouchi S., Beppu T. 1994; Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. Journal of Biological Chemistry 269:6320–6324
    [Google Scholar]
  14. Olson M. O. J., Dundr M., Szebeni A. 2000; The nucleolus: an old factory with unexpected capabilities. Trends in Cell Biology 10:189–196
    [Google Scholar]
  15. Pasternak A. O., van den Born E., Spaan W. J. M., Snijder E. J. 2001; Sequence requirements for RNA strand transfer during nidovirus discontinuous subgenomic RNA synthesis. EMBO Journal 20:7220–7228
    [Google Scholar]
  16. Pedersen K. W., van der Meer Y., Roos N., Snijder E. J. 1999; Open reading frame 1a-encoded subunits of the arterivirus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex. Journal of Virology 73:2016–2026
    [Google Scholar]
  17. Pemberton L. F. 1998; Transport routes through the nuclear pore complex. Current Opinion in Cell Biology 10:392–399
    [Google Scholar]
  18. Rowland R. R., Kervin R., Kuckleburg C., Sperlich A., Benfield D. A. 1999; The localization of porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus of infected cells and identification of a potential nucleolar localization signal sequence. Virus Research 64:1–12
    [Google Scholar]
  19. Rust R. C., Landmann L., Gosert R., Tang B. L., Hong W., Hauri H. P., Egger D., Bienz K. 2001; Cellular COPII proteins are involved in production of the vesicles that form the poliovirus replication complex. Journal of Virology 75:9808–9818
    [Google Scholar]
  20. Sawicki S. G., Sawicki D. L. 1995; Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands. Advances in Experimental Biology and Medicine 380:499–506
    [Google Scholar]
  21. Sawicki D., Wang T., Sawicki S. 2001; The RNA structures engaged in replication and transcription of the A59 strain of mouse hepatitis virus. Journal of General Virology 82:385–396
    [Google Scholar]
  22. Schaad M. C., Jensen P. E., Carrington J. C. 1997; Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. EMBO Journal 16:4049–4059
    [Google Scholar]
  23. Schlegel A., Giddings T. H. J., Ladinsky M. S., Kirkegaard K. 1996; Cellular origin and ultrastructure of membranes induced during poliovirus infection. Journal of Virology 70:6576–6588
    [Google Scholar]
  24. Snijder E. J., Meulenberg J. J. M. 1998; The molecular biology of arteriviruses. Journal of General Virology 79:961–979
    [Google Scholar]
  25. Snijder E. J., Wassenaar A. L. M., Spaan W. J. M. 1992; The 5′ end of the equine arteritis virus replicase gene encodes a papainlike cysteine protease. Journal of Virology 66:7040–7048
    [Google Scholar]
  26. Snijder E. J., Wassenaar A. L. M., Spaan W. J. M. 1994; Proteolytic processing of the replicase ORF1a protein of equine arteritis virus. Journal of Virology 68:5755–5764
    [Google Scholar]
  27. Snijder E. J., van Tol H., Roos N., Pedersen K. W. 2001; Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex. Journal of General Virology 82:985–994
    [Google Scholar]
  28. Talcott B., Moore M. S. 1999; Getting across the nuclear pore complex. Trends in Cell Biology 9:312–318
    [Google Scholar]
  29. Tijms M. A., van Dinten L. C., Gorbalenya A. E., Snijder E. J. 2001; A zinc finger-containing papain-like protease couples subgenomic mRNA synthesis to genome translation in a positive-stranded RNA virus. Proceeding of the National Academy of Sciences, USA 98:1889–1894
    [Google Scholar]
  30. van der Meer Y., van Tol H., Krijnse Locker J., Snijder E. J. 1998; ORF1a-encoded replicase subunits are involved in the membrane association of the arterivirus replication complex. Journal of Virology 72:6689–6698
    [Google Scholar]
  31. van der Meer Y., Snijder E. J., Dobbe J. C., Schleich S., Denison M. R., Spaan W. J. M., Krijnse Locker J. 1999; Localization of mouse hepatitis virus non-structural proteins and RNA synthesis indicates a role for late endosomes in viral replication. Journal of Virology 73:7641–7657
    [Google Scholar]
  32. van Dinten L. C., Wassenaar A. L. M., Gorbalenya A. E., Spaan W. J. M., Snijder E. J. 1996; Processing of the equine arteritis virus replicase ORF1b protein: identification of cleavage products containing the putative viral polymerase and helicase domains. Journal of Virology 70:6625–6633
    [Google Scholar]
  33. van Marle G., Dobbe J. C., Gultyaev A. P., Luytjes W., Spaan W. J. M., Snijder E. J. 1999; Arterivirus discontinuous mRNA transcription is guided by base-pairing between sense and antisense transcription-regulating sequences. Proceeding of the National Academy of Sciences, USA 96:12056–12061
    [Google Scholar]
  34. Wurm T., Chen H., Hodgson T., Britton P., Brooks G., Hiscox J. A. 2001; Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. Journal of Virology 75:9345–9356
    [Google Scholar]
  35. Zeegers J. J. W., van der Zeijst B. A. M., Horzinek M. C. 1976; The structural proteins of equine arteritis virus. Virology 73:200–205
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-4-795
Loading
/content/journal/jgv/10.1099/0022-1317-83-4-795
Loading

Data & Media loading...

Most cited Most Cited RSS feed