1887

Abstract

Paramyxoviruses may adopt a similar fusion mechanism to other enveloped viruses, in which an anti-parallel six-helix bundle structure is formed post-fusion in the heptad repeat (HR) regions of the envelope fusion protein. In order to understand the fusion mechanism and identify fusion inhibitors of Newcastle disease virus (NDV), a member of the family, we have developed an system that separately expresses the F protein HR1 and HR2 regions as GST fusion proteins. The purified cleaved HR1 and HR2 have subsequently been assembled into a stable six-helix bundle heterotrimer complex. Furthermore, both the GST fusion protein and the cleaved HR2 show virus–cell fusion inhibition activity (IC of 1·07–2·93 μM). The solubility of the GST–HR2 fusion protein is much higher than that of the corresponding peptide. Hence this provides a plausible method for large-scale production of HR peptides as virus fusion inhibitors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-3-623
2002-03-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/3/0830623a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-3-623&mimeType=html&fmt=ahah

References

  1. Bagai S., Lamb R. A. 1995; Quantitative measurement of paramyxovirus fusion: differences in requirements of glycoproteins between simian virus 5 and human parainfluenza virus 3 or Newcastle disease virus. Journal of Virology 69:6712–6719
    [Google Scholar]
  2. Baker K. A., Dutch R. E., Lamb R. A., Jardetzky T. S. 1999; Structural basis for paramyxovirus-mediated membrane fusion. Molecular Cell 3:309–319
    [Google Scholar]
  3. Bentz J. 2000; Membrane fusion mediated by coiled coil: a hypothesis. Biophysical Journal 78:886–900
    [Google Scholar]
  4. Buckland R., Malvoisin E., Beauverger P., Wild F. 1992; A leucine zipper structure present in the measles virus fusion protein is not required for its tetramerization but is essential for fusion. Journal of General Virology 73:1703–1707
    [Google Scholar]
  5. Chen L., Gorman J. J., McKimm-Breschkin J., Lawrence L. J., Tulloch P. A., Smith B. J., Colman P. M., Lawrence M. C. 2001; The structure of the fusion glycoprotein of Newcastle disease virus suggests a novel paradigm for the molecular mechanism of membrane fusion. Structure 9:255–266
    [Google Scholar]
  6. Dutch R. E., Leser G. P., Lamb R. A. 1999; Paramyxovirus fusion protein: characterization of the core trimer, a rod-shaped complex with helices in antiparallel orientation. Virology 254:147–159
    [Google Scholar]
  7. Eckert D. M., Kim P. S. 2001; Mechanism of viral membrane fusion and its inhibition. Annual Review of Biochemistry 70:777–810
    [Google Scholar]
  8. Ghosh J. K., Peisajovich S. G., Ovadia M., Shai Y. 1998; Structure–function study of a heptad repeat positioned near the transmembrane domain of Sendai virus fusion protein which blocks virus–cell fusion. Journal of Biological Chemistry 273:27182–27190
    [Google Scholar]
  9. Habel K., Salzman N. P. 1969 Fundamental Techniques in Virology pp 76–84 London: Academic Press;
    [Google Scholar]
  10. Homma M., Ohuchi M. 1973; Trypsin action on the growth of Sendai virus in tissue culture cells. Journal of Virology 12:1457–1465
    [Google Scholar]
  11. Horvath C. M., Paterson R., Shaughnessy M. A., Wood R., Lamb R. A. 1992; Biological activity of paramyxovirus fusion proteins: factors influencing formation of syncytia. Journal of Virology 66:4564–4569
    [Google Scholar]
  12. Joshi S. B., Dutch R. E., Lamb R. A. 1998; A core trimer of the paramyxovirus fusion protein: parallels to influenza virus hemagglutinin and HIV gp41. Virology 248:20–34
    [Google Scholar]
  13. Karron R. A., Buonagurio D. A., Georgiu A. F., Whitehead S. S., Adamus J. E., Clements-Mann M. L., Harris D. O., Randolph V. B., Udem S. A., Murphy B. R., Sidhu M. S. 1997; Respiratory syncytial virus (RSV) SH and G proteins are not essential for viral replication in vitro: clinical evaluation and molecular characterization of a cold-passaged, attenuated RSV subgroup B mutant. Proceedings of the National Academy of Sciences, USA 94:13961–13966
    [Google Scholar]
  14. Kilby J. M., Hopkins S., Venetta T. M., DiMassimo B., Cloud G. A., Lee J. Y., Alldredge L., Hunter E., Lambert D., Bolognesi D., Matthews T., Johnson M. R., Nowak M. A., Shaw G. M., Saag M. S. 1998; Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nature Medicine 4:1302–1307
    [Google Scholar]
  15. Lamb R. A. 1993; Paramyxovirus fusion: a hypothesis of changes. Virology 197:1–11
    [Google Scholar]
  16. Matthews J. M., Young T. F., Tucker S. P., Mackay J. P. 2000; The core of the respiratory syncytial virus fusion protein is a trimeric coiled coil. Journal of Virology 74:5911–5920
    [Google Scholar]
  17. Rapaport D., Ovadia M., Shai Y. 1995; A synthetic peptide corresponding to a conserved heptad repeat domain is a potent inhibitor of Sendai virus–cell fusion: an emerging similarity with functional domains of other viruses. EMBO Journal 14:5524–5531
    [Google Scholar]
  18. Reitter J., Sergel T., Morrison T. G. 1995; Mutational analysis of the leucine zipper motif in the Newcastle disease virus fusion protein. Journal of Virology 69:5995–6004
    [Google Scholar]
  19. Scheid A., Choppin P. W. 1974; Identification and biological activities of paramyxovirus glycoproteins: activation of cell fusion, hemolysis and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology 57:475–490
    [Google Scholar]
  20. Sergel T. A., McGinnes L. W., Morrison T. G. 2000; A single amino acid change in the Newcastle disease virus fusion protein alters the requirement for HN protein in fusion. Journal of Virology 74:5101–5107
    [Google Scholar]
  21. Sergel T. A., McGinnes L. W., Morrison T. G. 2001; Mutations in the fusion peptide and adjacent heptad repeat inhibit folding or activity of the Newcastle disease virus fusion protein. Journal of Virology 75:7934–7943
    [Google Scholar]
  22. Sergel-Germano T., McQuain C., Morrison T. G. 1994; Mutations in the fusion peptide and heptad repeat regions of the Newcastle disease virus fusion protein block fusion. Journal of Virology 68:7654–7658
    [Google Scholar]
  23. Welkos S., O’Brien A. 1994; Determination of median lethal and infectious doses in animal model systems. Methods in Enzymology 235:29–39
    [Google Scholar]
  24. Wild T. F., Buckland R. 1997; Inhibition of measles virus infection and fusion with peptides corresponding to the leucine zipper region of the fusion protein. Journal of General Virology 78:107–111
    [Google Scholar]
  25. Young J. K., Hicks R. P., Wright G. E., Morrison T. G. 1997; Analysis of a peptide inhibitor of paramyxovirus (NDV) fusion using biological assays, NMR and molecular modeling. Virology 238:291–304
    [Google Scholar]
  26. Young J. K., Li D., Abramowitz M. C., Morrison T. G. 1999; Interaction of peptides with sequences from the Newcastle disease virus fusion protein heptad repeat regions. Journal of Virology 73:5945–5956
    [Google Scholar]
  27. Zhao X., Singh M., Malashkevich V. N., Kim P. S. 2000; Structural characterization of the human respiratory syncytial virus fusion protein core. Proceedings of the National Academy of Sciences, USA 97:14172–14177
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-3-623
Loading
/content/journal/jgv/10.1099/0022-1317-83-3-623
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error