1887

Abstract

The haemagglutinin (HA) protein of fowl plague virus A/FPV/Rostock/34 (H7N1) contains three -linked oligosaccharide side chains in its stem domain. These stem glycans, which are attached to the Asn residues at positions 12, 28 and 478, are highly conserved throughout all HA protein sequences analysed to date. In a previous study, in which mutant HA proteins lacking individual stem glycosylation sites had been expressed from an SV-40 vector, it was shown that these glycans maintain the HA protein in the metastable form required for fusion activity. In the present study, the functional role of the stem -glycans for virus replication was investigated using recombinant influenza viruses generated by an RNA polymerase I-based system. Studies in Madin–Darby canine kidney cells and embryonated chickens’ eggs revealed that the -glycan at Asn is crucial for virus replication. In both culture systems, growth of virus lacking this glycan (mutant cg1) was completely blocked at 37 °C and inhibited at 33 °C. Loss of the glycan from Asn (mutant cg3) caused less striking, but still measurable, effects. Interestingly, it was not possible to generate mutant viruses containing the HA protein lacking the -glycan at Asn. It is concluded from this that the -glycan at Asn is indispensable for the formation of replication-competent influenza viruses. When compared to viruses containing wild-type HA protein, mutants cg1 and cg3 showed a significantly decreased pH stability. Taken together, these data show that the HA stem glycans are potent regulators of influenza virus replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-3-601
2002-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/3/0830601a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-3-601&mimeType=html&fmt=ahah

References

  1. Bullough P. A., Hughson F. M., Skehel J. J., Wiley D. C. 1994; Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371:37–43
    [Google Scholar]
  2. Carr C. M., Kim P. S. 1993; A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73:823–832
    [Google Scholar]
  3. Carr C. M., Kim P. S. 1994; Flu virus invasion: halfway there. Science 266:234–236
    [Google Scholar]
  4. Carr C. M., Chaudhry C., Kim P. S. 1997; Influenza hemagglutinin is spring-loaded by a metastable native conformation. Proceedings of the National Academy of Sciences, USA 94:14306–14313
    [Google Scholar]
  5. Daniels R. S., Downie J. C., Hay A. J., Knossow M., Skehel J. J., Wang M. L., Wiley D. C. 1985; Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell 40:431–439
    [Google Scholar]
  6. Doms R. W., Gething M. J., Henneberry J., White J., Helenius A. 1986; Variant influenza virus hemagglutinin that induces fusion at elevated pH. Journal of Virology 57:603–613
    [Google Scholar]
  7. Gallagher P. J., Henneberry J. M., Sambrook J. F., Gething M. J. 1992; Glycosylation requirements for intracellular transport and function of the hemagglutinin of influenza virus. Journal of Virology 66:7136–7145
    [Google Scholar]
  8. Godley L., Pfeifer J., Steinhauer D., Ely B., Shaw G., Kaufmann R., Suchanek E., Pabo C., Skehel J. J., Wiley D. C. and others 1992; Introduction of intersubunit disulfide bonds in the membrane-distal region of the influenza hemagglutinin abolishes membrane fusion activity. Cell 68:635–645
    [Google Scholar]
  9. Hughson F. M. 1995; Structural characterization of viral fusion proteins. Current Biology 5:265–274
    [Google Scholar]
  10. Inkster M. D., Hinshaw V. S., Schulze I. T. 1993; The hemagglutinins of duck and human H1 influenza viruses differ in sequence conservation and in glycosylation. Journal of Virology 67:7436–7443
    [Google Scholar]
  11. Keil W., Geyer R., Dabrowski J., Dabrowski U., Niemann H., Stirm S., Klenk H.-D. 1985; Carbohydrates of influenza virus. Structural elucidation of the individual glycans of the FPV hemagglutinin by two-dimensional 1H n.m.r. and methylation analysis. EMBO Journal 4:2711–2720
    [Google Scholar]
  12. Kemble G. W., Bodian D. L., Rose J., Wilson I. A., White J. M. 1992; Intermonomer disulfide bonds impair the fusion activity of influenza virus hemagglutinin. Journal of Virology 66:4940–4950
    [Google Scholar]
  13. Klenk H.-D., Garten W. 1994; Host cell proteases controlling virus pathogenicity. Trends in Microbiology 2:39–43
    [Google Scholar]
  14. Korte T., Ludwig K., Booy F. P., Blumenthal R., Herrmann A. 1999; Conformational intermediates and fusion activity of influenza virus hemagglutinin. Journal of Virology 73:4567–4574
    [Google Scholar]
  15. Lis H., Sharon N. 1993; Protein glycosylation. Structural and functional aspects. European Journal of Biochemistry 218:1–27
    [Google Scholar]
  16. Matrosovich M., Zhou N., Kawaoka Y., Webster R. 1999; The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. Journal of Virology 73:1146–1155
    [Google Scholar]
  17. Mir-Shekari S. Y., Ashford D. A., Harvey D. J., Dwek R. A., Schulze I. T. 1997; The glycosylation of the influenza A virus hemagglutinin by mammalian cells. A site-specific study. Journal of Biological Chemistry 272:4027–4036
    [Google Scholar]
  18. Nobusawa E., Aoyama T., Kato H., Suzuki Y., Tateno Y., Nakajima K. 1991; Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virology 182:475–485
    [Google Scholar]
  19. Ohuchi M., Ohuchi R., Feldmann A., Klenk H.-D. 1997a; Regulation of receptor binding affinity of influenza virus hemagglutinin by its carbohydrate moiety. Journal of Virology 71:8377–8384
    [Google Scholar]
  20. Ohuchi R., Ohuchi M., Garten W., Klenk H.-D. 1997b; Oligosaccharides in the stem region maintain the influenza virus hemagglutinin in the metastable form required for fusion activity. Journal of Virology 71:3719–3725
    [Google Scholar]
  21. Pleschka S., Jaskunas R., Engelhardt O. G., Zurcher T., Palese P., Garcia-Sastre A. 1996; A plasmid-based reverse genetics system for influenza A virus. Journal of Virology 70:4188–4192
    [Google Scholar]
  22. Puri A., Booy F. P., Doms R. W., White J. M., Blumenthal R. 1990; Conformational changes and fusion activity of influenza virus hemagglutinin of the H2 and H3 subtypes: effects of acid pretreatment. Journal of Virology 64:3824–3832
    [Google Scholar]
  23. Roberts P. C., Garten W., Klenk H.-D. 1993; Role of conserved glycosylation sites in maturation and transport of influenza A virus hemagglutinin. Journal of Virology 67:3048–3060
    [Google Scholar]
  24. Scholtissek C. 1985; Stability of infectious influenza A viruses at low pH and at elevated temperature. Vaccine 3:215–218
    [Google Scholar]
  25. Schulman J. L., Palese P. 1977; Virulence factors of influenza A viruses: WSN virus neuraminidase required for plaque production in MDBK cells. Journal of Virology 24:170–176
    [Google Scholar]
  26. Shangguan T., Siegel D. P., Lear J. D., Axelsen P. H., Alford D., Bentz J. 1998; Morphological changes and fusogenic activity of influenza virus hemagglutinin. Biophysical Journal 74:54–62
    [Google Scholar]
  27. Skehel J. J., Wiley D. C. 2000; Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annual Review of Biochemistry 69:531–569
    [Google Scholar]
  28. Stegmann T., White J. M., Helenius A. 1990; Intermediates in influenza induced membrane fusion. EMBO Journal 9:4231–4241
    [Google Scholar]
  29. Steinhauer D. A., Wharton S. A. 1998; Structure and function of the haemagglutinin. In Textbook of Influenza pp 54–64 Edited by Nicholson K. G., Webster R. G., Hay A. J. London: Blackwell Science;
    [Google Scholar]
  30. Steinhauer D. A., Wharton S. A., Skehel J. J., Wiley D. C., Hay A. J. 1991; Amantadine selection of a mutant influenza virus containing an acid-stable hemagglutinin glycoprotein: evidence for virus-specific regulation of the pH of glycoprotein transport vesicles. Proceedings of the National Academy of Sciences, USA 88:11525–11529
    [Google Scholar]
  31. Steinhauer D. A., Martin J., Lin Y. P., Wharton S. A., Oldstone M. B., Skehel J. J., Wiley D. C. 1996; Studies using double mutants of the conformational transitions in influenza hemagglutinin required for its membrane fusion activity. Proceedings of the National Academy of Sciences, USA 93:12873–12878
    [Google Scholar]
  32. Stieneke-Gröber A., Vey M., Angliker H., Shaw E., Thomas G., Roberts C., Klenk H.-D., Garten W. 1992; Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO Journal 11:2407–2414
    [Google Scholar]
  33. Varki A. 1993; Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130
    [Google Scholar]
  34. Wagner R., Wolff T., Herwig A., Pleschka S., Klenk H.-D. 2000; Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. Journal of Virology 74:6316–6323
    [Google Scholar]
  35. Wharton S. A., Skehel J. J., Wiley D. C. 1986; Studies of influenza haemagglutinin-mediated membrane fusion. Virology 149:27–35
    [Google Scholar]
  36. Wilson I. A., Skehel J. J., Wiley D. C. 1981; Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289:366–373
    [Google Scholar]
  37. Zobel A., Neumann G., Hobom G. 1993; RNA polymerase I catalysed transcription of insert viral cDNA. Nucleic Acids Research 21:3607–3614
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-3-601
Loading
/content/journal/jgv/10.1099/0022-1317-83-3-601
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error