1887

Abstract

The distribution of disease-associated prion protein (PrP) was investigated in eight animals (20–24 months of age) from a flock of Suffolk sheep that had experienced frequent cases of natural scrapie over a period of several years. Tissue from the central nervous system (CNS), alimentary tract, peripheral nervous system and lymphoreticular system was examined by histopathology and immunohistochemistry. The lymphoid tissues were subjected further to histoblot and immunofluorescence examination. The four clinically affected PrP sheep had widespread accumulations of disease-associated PrP in the CNS, lymphoreticular system and peripheral ganglia. In the two PrP sheep that did not show clinical signs of scrapie, only limited vacuolation and PrP accumulation were detected in the brain, but the results from the lymphoreticular system and peripheral nervous system were comparable with the clinically affected animals. The remaining PrP and PrP sheep did not show proteinase K-resistant PrP accumulations in the lymphoid tissues examined and immunohistochemistry did not reveal the presence of disease-associated PrP. In lymphoid tissues of the PrP sheep, the dominant localization of disease-associated PrP was in lymphoid nodules and double immunofluorescence labelling for PrP and CD21 provided further support for the role of follicular dendritic cells in scrapie in sheep. A striking finding in the present study was the large accumulations of disease-associated PrP in the lymphoid nodules of the alimentary tract at the late sub-clinical and clinical stage of the infection. The study also identified disease-associated PrP in extra-nodular sites of lymphoid tissues, such as the marginal zone of the spleen, and these observations were used to argue that cells of the mononuclear phagocyte system of sheep may be involved in the uptake, transport, elimination and shedding of the scrapie agent.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-2-479
2002-02-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/2/0830479a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-2-479&mimeType=html&fmt=ahah

References

  1. Andréoletti O., Berthon P., Marc D., Sarradin P., Grosclaude J., van Keulen L., Schelcher F., Elsen J.-M., Lantier F. 2000; Early accumulation of PrPSc in gut-associated lymphoid and nervous tissues of susceptible sheep from a Romanov flock with natural scrapie. Journal of General Virology 81:3115–3126
    [Google Scholar]
  2. Baldauf E., Beekes M., Diringer H. 1997; Evidence for an alternative direct route of access for the scrapie agent to the brain bypassing the spinal cord. Journal of General Virology 78:1187–1197
    [Google Scholar]
  3. Beringue V., Demoy M., Lasmézas C. I., Gouritin B., Weingarten C., Deslys J. P., Andreux J. P., Couvreur P., Dormont D. 2000; Role of spleen macrophages in the clearance of scrapie agent early in pathogenesis. Journal of Pathology 190:495–502
    [Google Scholar]
  4. Bolton D. C., McKinley M. P., Prusiner S. B. 1982; Identification of a protein that purifies with the scrapie prion. Science 218:1309–1311
    [Google Scholar]
  5. Bradley R. 1997; Animal prion diseases. In Prion Diseases pp 89–129 Edited by Collinge J., Palmer M. S. Oxford: Oxford University Press;
    [Google Scholar]
  6. Brown K. L., Stewart K., Ritchie D. L., Mabbott N. A., Williams A., Fraser H., Morrison W. I., Bruce M. E. 1999; Scrapie replication in lymphoid tissues depends on prion protein-expressing follicular dendritic cells. Nature Medicine 5:1308–1312
    [Google Scholar]
  7. Bruce M. E., Brown K. L., Mabbott N. A., Farquhar C. F., Jeffrey M. 2000; Follicular dendritic cells in TSE pathogenesis. Immunology Today 21:442–446
    [Google Scholar]
  8. Carp R. I., Callahan S. M. 1982; Effect of mouse peritoneal macrophages on scrapie infectivity during extended in vitro incubation. Intervirology 17:201–207
    [Google Scholar]
  9. Caughey B., Raymond G. J., Ernst D., Race R. E. 1991; N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. Journal of Virology 65:6597–6603
    [Google Scholar]
  10. Dijkstra C. D., Kamperdijk E. W., Dopp E. A. 1984; The ontogenetic development of the follicular dendritic cell. An ultrastructural study by means of intravenously injected horseradish peroxidase (HRP)–anti-HRP complexes as marker. Cell and Tissue Research 236:203–206
    [Google Scholar]
  11. Farquhar C. F., Somerville R. A., Ritchie L. A. 1989; Post-mortem immunodiagnosis of scrapie and bovine spongiform encephalopathy. Journal of Virological Methods 24:215–221
    [Google Scholar]
  12. Felten D. L., Felten S. Y., Carlson S. L., Olschowka J. A., Livnat S. 1985; Noradrenergic and peptidergic innervation of lymphoid tissue. Journal of Immunology 135 (Suppl. 2):755S–765S
    [Google Scholar]
  13. Frigg R., Klein M. A., Hegyi I., Zinkernagel R. M., Aguzzi A. 1999; Scrapie pathogenesis in subclinically infected B-cell-deficient mice. Journal of Virology 73:9584–9588
    [Google Scholar]
  14. Garssen G. J., Van Keulen L. J. M., Farquhar C. F., Smits M. A., Jacobs J. G., Bossers A., Meloen R. H., Langeveld J. P. M. 2000; Applicability of three anti-PrP peptide sera including staining of tonsils and brainstem of sheep with scrapie. Microscopy Research and Technique 50:32–39
    [Google Scholar]
  15. Hardt M., Baron T., Groschup M. H. 2000; A comparative study of immunohistochemical methods for detecting abnormal prion protein with monoclonal and polyclonal antibodies. Journal of Comparative Pathology 122:43–53
    [Google Scholar]
  16. Haritani M., Spencer Y. I., Wells G. A. 1994; Hydrated autoclave pretreatment enhancement of prion protein immunoreactivity in formalin-fixed bovine spongiform encephalopathy-affected brain. Acta Neuropathologica 87:86–90
    [Google Scholar]
  17. Heggebø R., Press C. McL., Gunnes G., Lie K. I., Tranulis M. A., Ulvund M., Groschup M. H., Landsverk T. 2000; Distribution of prion protein in the ileal Peyer’s patch of scrapie-free lambs and lambs naturally and experimentally exposed to the scrapie agent. Journal of General Virology 81:2327–2337
    [Google Scholar]
  18. Hein W. R., Dudler L., Marston W. L., Landsverk T., Young A. J., Avila D. 1998; Ubiquitination and dimerization of complement receptor type 2 on sheep B cells. Journal of Immunology 161:458–466
    [Google Scholar]
  19. Hunter N. 1997; PrP genetics in sheep and the implications for scrapie and BSE. Trends in Microbiology 5:331–334
    [Google Scholar]
  20. Hunter N., Goldmann W., Foster J. D., Cairns D., Smith G. 1997a; Natural scrapie and PrP genotype: case-control studies in British sheep. Veterinary Record 141:137–140
    [Google Scholar]
  21. Hunter N., Moore L., Hosie B. D., Dingwall W. S., Greig A. 1997b; Association between natural scrapie and PrP genotype in a flock of Suffolk sheep in Scotland. Veterinary Record 140:59–63
    [Google Scholar]
  22. Jeffrey M., McGovern G., Goodsir C. M., Brown K. L., Bruce M. E. 2000; Sites of prion protein accumulation in scrapie-infected mouse spleen revealed by immuno-electron microscopy. Journal of Pathology 191:323–332
    [Google Scholar]
  23. Kapasi Z. F., Qin D., Kerr W. G., Kosco-Vilbois M. H., Shultz L. D., Tew J. G., Szakal A. K. 1998; Follicular dendritic cell (FDC) precursors in primary lymphoid tissues. Journal of Immunology 160:1078–1084
    [Google Scholar]
  24. Kimberlin R. H., Hall S. M., Walker C. A. 1983; Pathogenesis of mouse scrapie. Evidence for direct neural spread of infection to the CNS after injection of sciatic nerve. Journal of the Neurological Sciences 61:315–325
    [Google Scholar]
  25. Kitamoto T., Muramoto T., Mohri S., Doh-Ura K., Tateishi J. 1991; Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt–Jakob disease. Journal of Virology 65:6292–6295
    [Google Scholar]
  26. Klein M. A., Frigg R., Flechsig E., Raeber A. J., Kalinke U., Bluethmann H., Bootz F., Suter M., Zinkernagel R. M., Aguzzi A. 1997; A crucial role for B cells in neuroinvasive scrapie. Nature 390:687–690
    [Google Scholar]
  27. Kraal G. 1992; Cells in the marginal zone of the spleen. International Review of Cytology 132:31–74
    [Google Scholar]
  28. Langeveld J. P. M., Farquhar C. F., Pocchiari M., Birkett C., Bostock C., Meloen R. H. 1993; Antigenic sites of bovine prion protein. In Transmissible Spongiform Encephalopathies pp 315–321 Edited by Bradley R., Marchant B. Brussels: European Commission;
    [Google Scholar]
  29. Lasmézas C. I., Cesbron J. Y., Deslys J. P., Demaimay R., Adjou K. T., Rioux R., Lemaire C., Locht C., Dormont D. 1996; Immune system-dependent and -independent replication of the scrapie agent. Journal of Virology 70:1292–1295
    [Google Scholar]
  30. Mabbott N. A., Mackay F., Minns F., Bruce M. E. 2000; Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nature Medicine 6:719–720
    [Google Scholar]
  31. McBride P. A., Eikelenboom P., Kraal G., Fraser H., Bruce M. E. 1992; PrP protein is associated with follicular dendritic cells of spleens and lymph nodes in uninfected and scrapie-infected mice. Journal of Pathology 168:413–418
    [Google Scholar]
  32. Montrasio F., Frigg R., Glatzel M., Klein M. A., Mackay F., Aguzzi A., Weissmann C. 2000; Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288:1257–1259
    [Google Scholar]
  33. O’Rourke K. I., Holyoak G. R., Clark W. W., Mickelson J. R., Wang S., Melco R. P., Besser T. E., Foote W. C. 1997; PrP genotypes and experimental scrapie in orally inoculated Suffolk sheep in the United States. Journal of General Virology 78:975–978
    [Google Scholar]
  34. Pasparakis M., Kousteni S., Peschon J., Kollias G. 2000; Tumor necrosis factor and the p55TNF receptor are required for optimal development of the marginal sinus and for migration of follicular dendritic cell precursors into splenic follicles. Cellular Immunology 201:33–41
    [Google Scholar]
  35. Prusiner S. B. 1982; Novel proteinaceous infectious particles cause scrapie. Science 216:136–144
    [Google Scholar]
  36. Rademakers L. H. 1991; Follicular dendritic cells in germinal centre development. Research in Immunology 142:257–260
    [Google Scholar]
  37. Ritchie D. L., Brown K. L., Bruce M. E. 2000; Visualisation of PrP protein and follicular dendritic cells in uninfected and scrapie-infected spleen. Journal of Cellular Pathology 1:3–10
    [Google Scholar]
  38. Szakal A. K., Kosco M. H., Tew J. G. 1988; A novel in vivo follicular dendritic cell-dependent iccosome-mediated mechanism for delivery of antigen to antigen-processing cells. Journal of Immunology 140:341–353
    [Google Scholar]
  39. Taraboulos A., Jendroska K., Serban D., Yang S. L., DeArmond S. J., Prusiner S. B. 1992; Regional mapping of prion proteins in brain. Proceedings of the National Academy of Sciences, USA 89:7620–7624
    [Google Scholar]
  40. van Keulen L. J., Schreuder B. E., Meloen R. H., Mooij-Harkes G., Vromans M. E., Langeveld J. P. 1996; Immunohistochemical detection of prion protein in lymphoid tissues of sheep with natural scrapie. Journal of Clinical Microbiology 34:1228–1231
    [Google Scholar]
  41. van Keulen L. J., Schreuder B. E., Vromans M. E., Langeveld J. P., Smits M. A. 1999; Scrapie-associated prion protein in the gastrointestinal tract of sheep with natural scrapie. Journal of Comparative Pathology 121:55–63
    [Google Scholar]
  42. van Keulen L. J. M., Schreuder B. E. C., Vromans M. E. W., Langeveld J. P. M., Smits M. A. 2000; Pathogenesis of natural scrapie in sheep. In Prion Diseases Diagnosis and Pathogenesis pp 57–71 Edited by Groschup M. H., Kretzschmar H. A. Vienna: Springer–Verlag;
    [Google Scholar]
  43. Westaway D., Zuliani V., Cooper C. M., Da Costa M., Neuman S., Jenny A. L., Detwiler L., Prusiner S. B. 1994; Homozygosity for prion protein alleles encoding glutamine-171 renders sheep susceptible to natural scrapie. Genes & Development 8:959–969
    [Google Scholar]
  44. Young A. J., Marston W. L., Dessing M., Dudler L., Hein W. R. 1997; Distinct recirculating and non-recirculating B-lymphocyte pools in the peripheral blood are defined by coordinated expression of CD21 and L-selectin. Blood 90:4865–4875
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-2-479
Loading
/content/journal/jgv/10.1099/0022-1317-83-2-479
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error