1887

Abstract

Monopartite members of the family utilize three virus-encoded proteinases to cleave the viral polyprotein into mature proteins. The amino-terminal region of the viral polyprotein is autolytically cleaved by the P1 proteinase. A domain required for P1 proteinase activity of (WSMV) was mapped using a series of templates with nested 3′-truncations or 5′-deletions to program transcription–translation reactions. The WSMV P1 proteinase cleavage site was mapped to a position downstream of amino acid residue 348 and upstream of amino acid residue 353, with the peptide bond between amino acid residues Y and G the most probable site of hydrolysis. An alignment of potyvirus polyprotein sequences in the carboxy-terminal region of the P1 domain revealed WSMV P1 contained conserved H, D, S and FIVXG residues upstream of the cleavage site that are typical of serine proteinases and shown by others to be required for P1 proteolysis in . Insertion of the GUS reporter gene immediately downstream of the P1 cleavage site in a full-length clone of WSMV resulted in systemic infection and GUS expression upon inoculation of plants with transcripts. When cleaved by P1 at the amino terminus and NIa proteinase at a site engineered in the carboxy-terminus, active GUS protein expressed by WSMV in infected wheat had electrophoretic mobility similar to wild-type GUS protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-2-443
2002-02-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/2/0830443a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-2-443&mimeType=html&fmt=ahah

References

  1. Allison, R. F., Johnson, R. E. & Dougherty, W. G. ( 1986; ). The nucleotide sequence of the coding region of tobacco etch virus genomic RNA: evidence for the synthesis of a single polyprotein. Virology 154, 9-20.[CrossRef]
    [Google Scholar]
  2. Bazan, J. F. & Fletterick, R. J. ( 1990; ). Structural and catalytic models of trypsin-like proteases. Seminars in Virology 1, 311-322.
    [Google Scholar]
  3. Carrington, J. C. & Dougherty, W. G. ( 1987; ). Small nuclear inclusion protein encoded by a plant potyvirus genome is a protease. Journal of Virology 61, 2540-2548.
    [Google Scholar]
  4. Carrington, J. C., Cary, S. M., Parks, T. D. & Dougherty, W. G. ( 1989; ). A second proteinase encoded by a plant potyviral genome. EMBO Journal 8, 365-370.
    [Google Scholar]
  5. Choi, I.-R., French, R., Hein, G. L. & Stenger, D. C. ( 1999; ). Fully biologically active in vitro transcripts of the eriophyid mite-transmitted wheat streak mosaic tritimovirus. Phytopathology 89, 1182-1185.[CrossRef]
    [Google Scholar]
  6. Choi, I.-R., Stenger, D. C. & French, R. ( 2000a; ). Multiple interactions among proteins encoded by the mite-transmitted wheat streak mosaic tritimovirus. Virology 267, 185-198.[CrossRef]
    [Google Scholar]
  7. Choi, I.-R., Stenger, D. C., Morris, T. J. & French, R. ( 2000b; ). A plant virus vector for systemic expression of foreign genes in cereals. Plant Journal 23, 547-555.[CrossRef]
    [Google Scholar]
  8. Choi, I.-R., Hall, J. S., Henry, M., Zhang, L., Hein, G. L., French, R. & Stenger, D. C. ( 2001; ). Contributions of genetic drift and negative selection on the evolution of three strains of wheat streak mosaic tritimovirus. Archives of Virology 146, 619-628.[CrossRef]
    [Google Scholar]
  9. Dolja, V. V., McBride, H. J. & Carrington, J. C. ( 1992; ). Tagging of plant potyvirus replication and movement by insertion of β-glucuronidase into the viral polyprotein. Proceedings of the National Academy of Sciences, USA 89, 10208-10212.[CrossRef]
    [Google Scholar]
  10. Domier, L. L., Franklin, K. M., Shahabuddin, M., Hellmann, G. M., Overmeyer, J. H., Hiremath, S. T., Siaw, M. F., Lomonossoff, G. P., Shaw, J. G. & Rhoads, R. E. ( 1986; ). The nucleotide sequence of tobacco vein mottling virus RNA. Nucleic Acids Research 14, 5417-5430.[CrossRef]
    [Google Scholar]
  11. Götz, R. & Maiss, E. ( 1995; ). The complete nucleotide sequence and genome organization of the mite-transmitted brome streak mosaic rymovirus in comparison to those of potyviruses. Journal of General Virology 76, 2035-2042.[CrossRef]
    [Google Scholar]
  12. Maiss, E., Timpe, U., Brisske, A., Jelkmann, W., Casper, R., Himmler, G., Mattanovich, D. & Katinger, H. W. ( 1989; ). The complete nucleotide sequence of plum pox virus RNA. Journal of General Virology 70, 513-524.[CrossRef]
    [Google Scholar]
  13. Mavankal, G. & Rhoads, R. E. ( 1991; ). In vitro cleavage at or near the N-terminus of the helper component protein in tobacco vein mottling virus polyprotein. Virology 185, 6110-6114.
    [Google Scholar]
  14. Moreno, M., Brandwagt, B. F., Shaw, J. G. & Rodrı́guez-Cerezo, E. ( 1999; ). Infectious virus in transgenic plants inoculated with a nonviable P1-proteinase defective mutant of a potyvirus. Virology 257, 322-329.[CrossRef]
    [Google Scholar]
  15. Ryan, M. D. & Flint, M. ( 1997; ). Virus-encoded proteinases of the picornavirus super-group. Journal of General Virology 78, 699-723.
    [Google Scholar]
  16. Sadowy, E., Juszczuk, M., David, C., Gronenborn, B. & Hulanicka, M. D. ( 2001; ). Mutational analysis of the proteinase function of Potato leafroll virus. Journal of General Virology 82, 1517-1527.
    [Google Scholar]
  17. Steinberg, T. H., Lauber, W. M., Berggren, K., Kemper, C., Yue, S. & Patton, W. F. ( 2000; ). Fluorescence detection of proteins in sodium dodecyl sulfate–polyacrylamide gels using environmentally benign, nonfixative saline solution. Electrophoresis 21, 497-508.[CrossRef]
    [Google Scholar]
  18. Stenger, D. C., Hall, J. S., Choi, I.-R. & French, R. ( 1998; ). Phylogenetic relationships within the family Potyviridae: wheat streak mosaic virus and brome streak mosaic virus are not members of the genus Rymovirus. Phytopathology 88, 782-787.[CrossRef]
    [Google Scholar]
  19. Verchot, J., Koonin, E. V. & Carrington, J. C. ( 1991; ). The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus-encoded proteinase. Virology 185, 527-535.[CrossRef]
    [Google Scholar]
  20. Verchot, J., Herndon, K. L. & Carrington, J. C. ( 1992; ). Mutational analysis of the tobacco etch potyviral 35-kDa proteinase: identification of essential residues and requirements for autoproteolysis. Virology 190, 298-306.[CrossRef]
    [Google Scholar]
  21. Ward, C. W., Weiller, G. F., Shukla, D. D. & Gibbs, A. ( 1995; ). Molecular systematics of the Potyviridae, the largest plant virus family. In Molecular Basis of Virus Evolution , pp. 477-500. Edited by A. Gibbs, C. Calisher & F. Garcı́a-Arenal. Cambridge:Cambridge University Press.
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-2-443
Loading
/content/journal/jgv/10.1099/0022-1317-83-2-443
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error