1887

Abstract

The discs large (Dlg) tumour suppressor protein is targeted for ubiquitin-mediated degradation by the high-risk human papillomavirus E6 proteins. To understand further the mechanisms behind this, a mutational analysis of Dlg was undertaken. This study demonstrates that an intact PDZ domain 2 (PDZ2) on Dlg is necessary for the ability of E6 to bind and degrade Dlg. However, additional residues within the amino-terminal portion of Dlg are also required for optimal E6 activity. Stable cell lines expressing different Dlg mutants were also established and these confirm that Dlg is regulated intrinsically by the proteasome in the absence of E6; however, in this case, the sequences responsible for regulating Dlg stability lie predominantly within PDZ2. These results suggest that there are at least two mechanisms for regulating Dlg protein stability and that the pathways used by E6 are not necessarily the same as those used in the cell in its absence.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-2-283
2002-02-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/2/0830283a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-2-283&mimeType=html&fmt=ahah

References

  1. Anderson J. M. 1996; Cell signalling: MAGUK magic. Current Biology 6:382–384
    [Google Scholar]
  2. Androphy E. J., Hubbert N. L., Schiller J. T., Lowy D. R. 1987; Identification of the HPV-16 E6 protein from transformed mouse cells and human cervical carcinoma cell lines. EMBO Journal 6:989–992
    [Google Scholar]
  3. Banks L., Spence P., Androphy E., Hubbert N., Matlashewski G., Murray A., Crawford L. 1987; Identification of human papillomavirus type 18 E6 polypeptides in cells derived from human cervical carcinoma. Journal of General Virology 68:1351–1359
    [Google Scholar]
  4. Bilder D., Li M., Perrimon N. 2000; Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289:113–116
    [Google Scholar]
  5. Chen J. J., Reid C. E., Band V., Androphy E. J. 1995; Interaction of papillomavirus E6 oncoproteins with a putative calcium-binding protein. Science 269:529–531
    [Google Scholar]
  6. Fanning A. S., Anderson J. M. 1999; PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. Journal Clinical Investigation 103:767–772
    [Google Scholar]
  7. Foster S. A., Demers G. W., Etscheid B. G., Galloway D. A. 1994; The ability of human papillomavirus E6 proteins to target p53 for degradation in vivo correlates with their ability to abrogate actinomycin D-induced growth arrest. Journal of Virology 68:5698–5705
    [Google Scholar]
  8. Gardiol D., Banks L. 1998; Comparison of human papillomavirus type 18 (HPV-18) E6-mediated degradation of p53 in vitro and in vivo reveals significant differences based on p53 structure and cell type but little difference with respect to mutants of HPV-18 E6. Journal of General Virology 79:1963–1970
    [Google Scholar]
  9. Gardiol D., Kühne C., Glaunsinger B., Lee S. S., Javier R., Banks L. 1999; Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation. Oncogene 18:5487–5496
    [Google Scholar]
  10. Gaudet S., Branton D., Lue R. A. 2000; Characterization of PDZ-binding kinase, a mitotic kinase. Proceedings of the National Academy of Sciences, USA 97:5167–5172
    [Google Scholar]
  11. Glaunsinger B. A., Lee S. S., Thomas M., Banks L., Javier R. 2000; Interaction of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 19:5270–5280
    [Google Scholar]
  12. Goode S., Perrimon N. 1997; Inhibition of patterned cell shape change and cell invasion by Discs large during Drosophila oogenesis. Genes & Development 11:2532–2544
    [Google Scholar]
  13. Huibregtse J. M., Scheffner M., Howley P. M. 1991; A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO Journal 10:4129–4135
    [Google Scholar]
  14. Huibregtse J. M., Scheffner M., Howley P. M. 1993; Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Molecular and Cellular Biology 13:4918–4927
    [Google Scholar]
  15. Inoue T., Oka K., Yong-Il h., Vousden K. H., Kyo S., Jing P., Hakura A., Yutsudo M. 1998; Dispensability of p53 degradation for tumorigenicity and decreased serum requirement of human papillomavirus type 16 E6. Molecular Carcinogenesis 21:215–222
    [Google Scholar]
  16. Ishidate T., Matsumine A., Toyoshima K., Akiyama T. 2000; The APC–hDLG complex negatively regulates cell cycle progression from the G0/G1 to S phase. Oncogene 19:365–372
    [Google Scholar]
  17. Ishiwatari H., Hayasaka N., Inoue H., Yutsudo M., Hakura A. 1994; Degradation of p53 only is not sufficient in the growth stimulatory effect of human papillomavirus 16 E6 oncoprotein in human embryonic fibroblasts. Journal of Medical Virology 44:243–249
    [Google Scholar]
  18. Kim S. K. 1997; Polarized signalling: basolateral receptor localization in epithelial cells by PDZ-containing proteins. Current Opinion in Cell Biology 9:853–859
    [Google Scholar]
  19. Kiyono T., Hiraiwa A., Fujita M., Hayashi Y., Akiyama T., Ishibashi M. 1997; Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proceedings of the National Academy of Sciences, USA 94:11612–11616
    [Google Scholar]
  20. Kühne C., Banks L. 1998; E3-ubiquitin ligase/E6-AP links multicopy maintenance protein 7 to the ubiquitination pathway by a novel motif, the L2G box. Journal of Biological Chemistry 273:34302–34309
    [Google Scholar]
  21. Kühne C., Gardiol D., Guarnaccia C., Amenitsch H., Banks L. 2000; Differential regulation of human papillomavirus E6 by protein kinase A: conditional degradation of human discs large protein by oncogenic E6. Oncogene 19:5884–5891
    [Google Scholar]
  22. Lee S. S., Weiss R. S., Javier R. T. 1997; Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proceedings of the National Academy of Sciences, USA 94:6670–6675
    [Google Scholar]
  23. Lee S. S., Glaunsinger B., Mantovani F., Banks L., Javier R. T. 2000; Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. Journal of Virology 74:9680–9693
    [Google Scholar]
  24. Liu Y., Chen J. J., Gao Q., Dalal S., Hong Y., Mansur C. P., Band V., Androphy E. J. 1999; Multiple functions of human papillomavirus type 16 E6 contribute to the immortalization of mammary epithelial cells. Journal of Virology 73:7297–7307
    [Google Scholar]
  25. Lue R., Marfatia S., Branton D., Chishti A. 1994; Cloning and characterization of hdlg: the human homologue of the Drosophila discs large tumor suppressor binds to protein 4.1. Proceedings of the National Academy of Sciences, USA 91:9818–9822
    [Google Scholar]
  26. Matlashewski G., Schneider J., Banks L., Jones N., Murray A., Crawford L. 1987; Human papillomavirus type 16 DNA cooperates with activated ras in transforming primary cells. EMBO Journal 6:1741–1746
    [Google Scholar]
  27. Matsumine A., Ogai A., Senda T., Okumura N., Satoh K., Baeg G., Kawahara T., Kobayashi S., Okada M., Toyoshima K., Akiyama T. 1996; Binding of APC to the human homolog of the Drosophila discs large tumor suppressor protein. Science 272:1020–1023
    [Google Scholar]
  28. Müller B. M., Kistner U., Veh R. W., Cases-Langhoff C., Becker B., Gundelfinger E. D., Garner C. C. 1995; Molecular characterization and spatial distribution of SAP97, a novel presynaptic protein homologous to SAP90 and the Drosophila discs-large tumor suppressor protein. Journal of Neuroscience 15:2354–2366
    [Google Scholar]
  29. Nakagawa S., Huibregtse J. M. 2000; Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Molecular and Cellular Biology 20:8244–8253
    [Google Scholar]
  30. Patel D., Huang S. M., Baglia L., McCance D. J. 1999; The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO Journal 18:5061–5072
    [Google Scholar]
  31. Pim D., Storey A., Thomas M., Massimi P., Banks L. 1994; Mutational analysis of HPV-18 E6 identifies domains required for p53 degradation in vitro , abolition of p53 transactivation in vivo and immortalisation of primary BMK cells. Oncogene 9:1869–1876
    [Google Scholar]
  32. Pim D., Thomas M., Javier R., Gardiol D., Banks L. 2000; HPV E6 targeted degradation of the discs large protein: evidence for the involvement of a novel ubiquitin ligase. Oncogene 19719–725
    [Google Scholar]
  33. Ponting C. P., Phillips C. 1995; DHR domains in syntrophins, neuronal NO synthases and other intracellular proteins. Trends in Biochemical Sciences 20:102–103
    [Google Scholar]
  34. Reuver S. M., Garner C. C. 1998; E-cadherin mediated cell adhesion recruits SAP97 into the cortical cytoskeleton. Journal of Cell Science 111:1071–1080
    [Google Scholar]
  35. Scheffner M., Werness B. A., Huibregtse J. M., Levine A. J., Howley P. M. 1990; The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136
    [Google Scholar]
  36. Schwarz E., Freese U., Gissman L., Mayer W., Roggenbuck B., Stremlau A., zur Hausen H. 1985; Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314:111–114
    [Google Scholar]
  37. Smotkin D., Wettstein F. O. 1986; Transcription of human papillomavirus type 16 early genes in a cervical cancer and a cancer-derived cell line and identification of the E7 protein. Proceedings of the National Academy of Sciences, USA 83:4680–4684
    [Google Scholar]
  38. Songyang Z., Fanning A. S., Fu C., Xu J., Marfatia S. M., Chishti A. H., Crompton A., Chan A. C., Anderson J. M., Cantley L. C. 1997; Recognition of unique carboxy-terminal motifs by distinct PDZ domains. Science 275:73–77
    [Google Scholar]
  39. Suzuki T., Ohsugi Y., Uchida-Toita M., Akiyama T., Yoshida M. 1999; Tax oncoprotein of HTLV-1 binds to the human homologue of Drosophila discs large suppressor protein, hDLG, and perturbs its function in cell growth control. Oncogene 18:5967–5972
    [Google Scholar]
  40. Thomas M., Banks L. 1998; Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene 17:2943–2954
    [Google Scholar]
  41. Thomas M., Massimi P., Jenkins J., Banks L. 1995; HPV-18 E6 mediated inhibition of p53 DNA binding activity is independent of E6 induced degradation. Oncogene 10:261–268
    [Google Scholar]
  42. Vousden K. 1994; Interactions between papillomavirus proteins and tumor suppressor gene products. Advances in Cancer Research 64:1–24
    [Google Scholar]
  43. Woods D. F., Bryant P. J. 1991; The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell 66:451–464
    [Google Scholar]
  44. Woods D. F., Hough C., Peel D., Callaini G., Bryant P. J. 1996; Dlg protein is required for junction structures, cell polarity, and proliferation control in Drosophila epithelia. Journal of Cell Biology 134:1469–1482
    [Google Scholar]
  45. Wu H., Reuver S. M., Kuhlendahl S., Chung W. J., Garner C. C. 1998; Subcellular targeting and cytoskeletal attachment of SAP97 to the epithelial lateral membrane. Journal of Cell Science 111:2365–2376
    [Google Scholar]
  46. zur Hausen H. 1996; Papillomavirus infections: a major cause of human cancers. Biochimica et Biophysica Acta 1288:F55–F78
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-2-283
Loading
/content/journal/jgv/10.1099/0022-1317-83-2-283
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error