1887

Abstract

The RNA genome of (RTSV) is predicted to be expressed as a large polyprotein precursor (Shen ., 193, 621–630, 1993 ). The polyprotein is processed by at least one virus-encoded protease located adjacent to the C-terminal putative RNA polymerase which shows sequence similarity to viral serine-like proteases. The catalytic activity of this protease was explored using transcription/translation systems. Besides acting , the protease had activity on precursors containing regions of the 3′ half of the polyprotein but did not process a substrate consisting of a precursor of the coat proteins. The substitution mutation of Asp of the RTSV polyprotein had no effect on proteolysis; however, His, Glu, Cys and His proved to be essential for catalytic activity and could constitute the catalytic centre and/or substrate-binding pocket of the RTSV 3C-like protease.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-12-3179
2002-12-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/12/0833179a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-12-3179&mimeType=html&fmt=ahah

References

  1. Allaire, M., Chernaia, M. M., Malcolm, B. A. & James, M. N. G. ( 1994; ). Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine-proteinases. Nature 369, 72-76.[CrossRef]
    [Google Scholar]
  2. Bazan, J. F. & Fletterick, R. J. ( 1988; ). Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional applications. Proceedings of the National Academy of Sciences, USA 85, 7872-7876.[CrossRef]
    [Google Scholar]
  3. Blair, W. S., Li, X. & Semmler, B. L. ( 1993; ). A cellular cofactor facilitates efficient 3CD cleavage of the poliovirus P1 precursor. Journal of Virology 67, 2336-2343.
    [Google Scholar]
  4. Blair, W. S., Nguyen, J. H. C., Parsley, T. B. & Semmler, B. L. ( 1996; ). Mutations in the poliovirus 3CD proteinase S1-specificity pocket affect substrate recognition and RNA binding. Virology 218, 1-13.[CrossRef]
    [Google Scholar]
  5. Carrington, J. C., Freed, D. D. & Sanders, T. C. ( 1989; ). Autocatalytic processing of the potyvirus helper component proteinase in Escherichia coli and in vitro. Journal of Virology 63, 4459-4463.
    [Google Scholar]
  6. Carter, P. & Wells, J. A. ( 1988; ). Dissecting the catalytic triad of a serine protease. Nature 332, 564-568.[CrossRef]
    [Google Scholar]
  7. Chambers, T. J., Grakoui, A. & Rice, C. M. ( 1991; ). Processing of the yellow fever virus nonstructural polyprotein: a catalytically active NS3 proteinase domain and NS2B are required for cleavages at dibasic sites. Journal of Virology 65, 6042-6050.
    [Google Scholar]
  8. Cheah, K.-C., Leong, L. E.-C. & Porter, A. G. ( 1990; ). Site-directed mutagenesis suggests close functional relationship between a human rhinovirus 3C cysteine protease and cellular trypsin-like serine proteases. Journal of Biological Chemistry 265, 7180-7187.
    [Google Scholar]
  9. Clarke, B. E. & Sangar, D. V. ( 1988; ). Processing and assembly of foot-and-mouth disease virus proteins using subgenomic RNA. Journal of General Virology 69, 2313-2325.[CrossRef]
    [Google Scholar]
  10. Dessens, J. T. & Lomonossoff, G. P. ( 1991; ). Mutational analysis of the putative catalytic triad of the cowpea mosaic virus 24K protease. Virology 184, 738-746.[CrossRef]
    [Google Scholar]
  11. Dessens, J. T. & Lomonossoff, G. P. ( 1992; ). Sequence upstream of the 24 kDa protease enhances cleavage of the cowpea mosaic virus B RNA-encoded polyprotein at the junction between the 24K and 87K proteins. Virology 189, 225-232.[CrossRef]
    [Google Scholar]
  12. Dougherty, W. G. & Semler, B. L. ( 1993; ). Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiological Reviews 57, 781-822.
    [Google Scholar]
  13. Dougherty, W. G., Parks, T. D., Cary, S. M., Bazan, J. F. & Fletterick, R. J. ( 1989; ). Characterization of the catalytic residues of the tobacco etch virus 49-kDa proteinase. Virology 172, 302-310.[CrossRef]
    [Google Scholar]
  14. Failla, C., Tomei, L. & De Francesco, R. ( 1994; ). Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. Journal of Virology 68, 3753-3760.
    [Google Scholar]
  15. Gorbalenya, A., Donchenko, A. P., Blinov, V. M. & Koonin, E. V. ( 1989; ). Cysteine proteases of positive-strand RNA viruses and chymotrypsin-like serine proteases: a distinct protein superfamily with common structural fold. FEBS Letters 243, 103-114.[CrossRef]
    [Google Scholar]
  16. Hall, D. J. & Palmenberg, A. C. ( 1996; ). Cleavage site mutations in the encephalomyocarditis virus P3 region lethally abrogate the normal processing cascade. Journal of Virology 70, 5954-5961.
    [Google Scholar]
  17. Hämmerle, T., Hellen, C. U. T. & Wimmer, E. ( 1991; ). Site-directed mutagenesis of the putative catalytic triad of poliovirus 3C proteinase. Journal of Biological Chemistry 266, 5412-5416.
    [Google Scholar]
  18. Hans, F. & Sanfaçon, H. ( 1995; ). Tomato ringspot nepovirus protease: characterization and cleavage site specificity. Journal of General Virology 76, 917-927.[CrossRef]
    [Google Scholar]
  19. Harmon, S. A., Updike, W., Jia, X.-Y., Summers, D. F. & Ehrenfeld, E. ( 1992; ). Polyprotein processing in cis and trans by hepatitis A virus 3C protease cloned and expressed in Escherichia coli. Journal of Virology 66, 5242-5247.
    [Google Scholar]
  20. Hull, R. (2001). Matthews’ Plant Virology. London: Academic Press.
  21. Ivanoff, L. A., Towatari, T., Ray, J., Korant, B. D. & Petteway, S. R. ( 1986; ). Expression and site-specific mutagenesis of the poliovirus 3C protease in Escherichia coli. Proceedings of the National Academy of Sciences, USA 83, 5392-5396.[CrossRef]
    [Google Scholar]
  22. Jia, X.-Y., Ehrenfeld, E. & Summers, D. F. ( 1991; ). Proteolytic activity of hepatitis A virus 3C protein. Journal of Virology 65, 2595-2600.
    [Google Scholar]
  23. Jore, J., de Geus, B., Jackson, R. J., Pouwels, P. H. & Enger-Valk, B. E. ( 1988; ). Poliovirus protein 3CD is the active protease for processing of the precursor protein P1 in vitro. Journal of General Virology 69, 1627-1636.[CrossRef]
    [Google Scholar]
  24. Kean, K. M., Teterina, N. L., Marc, D. & Girad, M. ( 1991; ). Analysis of putative active site residues of the poliovirus 3C protease. Virology 181, 609-619.[CrossRef]
    [Google Scholar]
  25. Kean, K. M., Howell, M. T., Grünert, S., Girard, M. & Jackson, R. J. ( 1993; ). Substitution mutations at the putative catalytic triad of the poliovirus 3C protease have differential effects on cleavage at different sites. Virology 194, 360-364.[CrossRef]
    [Google Scholar]
  26. Koonin, E. V. & Dolja, V. V. ( 1993; ). Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Critical Reviews in Biochemistry and Molecular Biology 28, 375-430.[CrossRef]
    [Google Scholar]
  27. Lawson, M. A. & Semler, B. L. ( 1991; ). Poliovirus thiol proteinase 3C can utilize a serine nucleophile within the putative catalytic triad. Proceedings of the National Academy of Sciences, USA 88, 9919-9923.[CrossRef]
    [Google Scholar]
  28. Margis, R. & Pinck, L. ( 1992; ). Effect of site-directed mutagenesis on the presumed catalytic triad and substrate-binding pocket of grapevine fanleaf nepovirus 24-kDa proteinase. Virology 190, 884-888.[CrossRef]
    [Google Scholar]
  29. Margis, R., Viry, M., Pinck, M., Bardonnet, N. & Pinck, L. ( 1994; ). Differential proteolytic activities of precursor and mature forms of the 24K proteinase of grapevine fanleaf nepovirus. Virology 200, 79-86.[CrossRef]
    [Google Scholar]
  30. Matthews, D. A., Smith, W. W., Ferre, R. A., Condon, B., Budahazi, G., Sisson, W., Villafranca, J. E., Janson, C. A., McElroy, H. E., Gribskov, C. L. & Worland, S. ( 1994; ). Structure of human rhinovirus 3C protease reveals trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77, 761-771.[CrossRef]
    [Google Scholar]
  31. Mavankal, G. & Rhoads, R. E. ( 1991; ). In vitro cleavage at or near the N-terminus of the helper component protein in tobacco vein mottling virus polyprotein. Virology 185, 721-731.[CrossRef]
    [Google Scholar]
  32. Nicklin, M. J. H., Toyoda, H., Murray, M. G. & Wimmer, E. ( 1986; ). Proteolytic processing in the replication of polio and related viruses. Biotechnology 4, 36-42.
    [Google Scholar]
  33. Pallai, P. V., Burkhardt, F., Skoog, M., Schreiner, K., Baxt, P., Cohen, K. A., Hansen, G., Palladino, D. E. H., Harris, K. S., Nicklin, M. J. H. & Wimmer, E. ( 1989; ). Cleavage of synthetic peptides by purified poliovirus 3C proteinase. Journal of Biological Chemistry 264, 9738-9741.
    [Google Scholar]
  34. Palmenberg, A. C., Parks, G. D., Hall, D. J., Ingraham, R. H., Seng, T. W. & Pallai, P. V. ( 1992; ). Proteolytic processing of the cardioviral P2 region: primary 2A/2B cleavage in clone-derived precursors. Virology 190, 754-762.[CrossRef]
    [Google Scholar]
  35. Pelham, H. R. B. ( 1979; ). Synthesis and processing of cowpea mosaic virus proteins in reticulocyte lysates. Virology 96, 463-477.[CrossRef]
    [Google Scholar]
  36. Peters, S. A., Voorhorst, W. G. B., Wery, J., Wellink, J. & van Kammen, A. ( 1992; ). A regulatory role for the 32K protein in proteolytic processing of cowpea mosaic virus polyproteins. Virology 191, 81-89.[CrossRef]
    [Google Scholar]
  37. Ryan, M. D. & Flint, M. ( 1997; ). Virus-encoded proteinases of the picornaviral super-group. Journal of General Virology 78, 699-723.
    [Google Scholar]
  38. Shen, P., Kaniewska, M., Smith, C. & Beachy, R. N. ( 1993; ). Nucleotide sequence and genomic organization of rice tungro spherical virus. Virology 193, 621-630.[CrossRef]
    [Google Scholar]
  39. Shih, D. S., Bu, M., Price, M. A. & Shih, C.-Y. T. ( 1987; ). Inhibition of cleavage of a plant viral polyprotein by an inhibitor activity present in wheat germ and cowpea embryos. Journal of Virology 61, 912-915.
    [Google Scholar]
  40. Snijder, E. J., Wassenaar, A. L. M., van Dinten, L. C., Spaan, W. J. M. & Gorbalenya, A. E. ( 1996; ). The arterivirus Nsp4 protease is the prototype of a novel group of chymotrypsin-like enzymes, the 3C-like serine protease. Journal of Biological Chemistry 271, 4864-4871.[CrossRef]
    [Google Scholar]
  41. Spall, V. E., Shanks, M. & Lomonossoff, G. P. ( 1997; ). Polyprotein processing as a strategy for gene expression in RNA viruses. Seminars in Virology 8, 15-23.[CrossRef]
    [Google Scholar]
  42. Thole, V. & Hull, R. ( 1996; ). Rice tungro spherical virus: nucleotide sequence of the 3′ genomic half and studies on the 3′ two small open reading frames. Virus Genes 13, 239-246.[CrossRef]
    [Google Scholar]
  43. Thole, V. & Hull, R. ( 1998; ). Rice tungro spherical virus polyprotein processing: identification of a virus-encoded protease and mutational analysis of putative cleavage sites. Virology 247, 106-114.[CrossRef]
    [Google Scholar]
  44. Vakharia, V. N., Devaney, M. A., Moore, D. M., Dunn, J. J. & Grubman, M. J. ( 1987; ). Proteolytic processing of foot-and-mouth disease virus polyproteins expressed in a cell-free system from clone-derived transcripts. Journal of Virology 61, 3199-3207.
    [Google Scholar]
  45. Verchot, J., Koonin, E. V. & Carrington, J. C. ( 1991; ). The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus-encoded proteinase. Virology 185, 527-535.[CrossRef]
    [Google Scholar]
  46. Verchot, J., Herndon, K. L. & Carrington, J. C. ( 1992; ). Mutational analysis of tobacco etch virus potyviral 35-kDa proteinase: identification of essential residues and requirements for autoproteolysis. Virology 190, 298-306.[CrossRef]
    [Google Scholar]
  47. Ypma-Wong, M. F., Dewalt, P. G., Johnson, V. H., Lamb, J. G. & Semler, B. L. ( 1988; ). Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 precursor. Virology 166, 265-270.[CrossRef]
    [Google Scholar]
  48. Zhang, S., Jones, M. C., Barker, P., Davies, J. W. & Hull, R. ( 1993; ). Molecular cloning and sequencing of coat protein-encoding cDNA of rice tungro spherical virus – a plant picornavirus. Virus Genes 7, 121-132.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-12-3179
Loading
/content/journal/jgv/10.1099/0022-1317-83-12-3179
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error