1887

Abstract

The RNA genome of (RTSV) is predicted to be expressed as a large polyprotein precursor (Shen ., 193, 621–630, 1993 ). The polyprotein is processed by at least one virus-encoded protease located adjacent to the C-terminal putative RNA polymerase which shows sequence similarity to viral serine-like proteases. The catalytic activity of this protease was explored using transcription/translation systems. Besides acting , the protease had activity on precursors containing regions of the 3’ half of the polyprotein but did not process a substrate consisting of a precursor of the coat proteins. The substitution mutation of Asp of the RTSV polyprotein had no effect on proteolysis; however, His, Glu, Cys and His proved to be essential for catalytic activity and could constitute the catalytic centre and/or substrate-binding pocket of the RTSV 3C-like protease.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-12-3179
2002-12-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/12/0833179a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-12-3179&mimeType=html&fmt=ahah

References

  1. Allaire M., Chernaia M. M., Malcolm B. A., James M. N. G. 1994; Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine-proteinases. Nature 369:72–76
    [Google Scholar]
  2. Bazan J. F., Fletterick R. J. 1988; Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional applications. Proceedings of the National Academy of Sciences, USA 85:7872–7876
    [Google Scholar]
  3. Blair W. S., Li X., Semmler B. L. 1993; A cellular cofactor facilitates efficient 3CD cleavage of the poliovirus P1 precursor. Journal of Virology 67:2336–2343
    [Google Scholar]
  4. Blair W. S., Nguyen J. H. C., Parsley T. B., Semmler B. L. 1996; Mutations in the poliovirus 3CD proteinase S1-specificity pocket affect substrate recognition and RNA binding. Virology 218:1–13
    [Google Scholar]
  5. Carrington J. C., Freed D. D., Sanders T. C. 1989; Autocatalytic processing of the potyvirus helper component proteinase in Escherichia coli and in vitro. Journal of Virology 63:4459–4463
    [Google Scholar]
  6. Carter P., Wells J. A. 1988; Dissecting the catalytic triad of a serine protease. Nature 332:564–568
    [Google Scholar]
  7. Chambers T. J., Grakoui A., Rice C. M. 1991; Processing of the yellow fever virus nonstructural polyprotein: a catalytically active NS3 proteinase domain and NS2B are required for cleavages at dibasic sites. Journal of Virology 65:6042–6050
    [Google Scholar]
  8. Cheah K.-C., Leong L. E.-C., Porter A. G. 1990; Site-directed mutagenesis suggests close functional relationship between a human rhinovirus 3C cysteine protease and cellular trypsin-like serine proteases. Journal of Biological Chemistry 265:7180–7187
    [Google Scholar]
  9. Clarke B. E., Sangar D. V. 1988; Processing and assembly of foot-and-mouth disease virus proteins using subgenomic RNA. Journal of General Virology 69:2313–2325
    [Google Scholar]
  10. Dessens J. T., Lomonossoff G. P. 1991; Mutational analysis of the putative catalytic triad of the cowpea mosaic virus 24K protease. Virology 184:738–746
    [Google Scholar]
  11. Dessens J. T., Lomonossoff G. P. 1992; Sequence upstream of the 24 kDa protease enhances cleavage of the cowpea mosaic virus B RNA-encoded polyprotein at the junction between the 24K and 87K proteins. Virology 189:225–232
    [Google Scholar]
  12. Dougherty W. G., Semler B. L. 1993; Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiological Reviews 57:781–822
    [Google Scholar]
  13. Dougherty W. G., Parks T. D., Cary S. M., Bazan J. F., Fletterick R. J. 1989; Characterization of the catalytic residues of the tobacco etch virus 49-kDa proteinase. Virology 172:302–310
    [Google Scholar]
  14. Failla C., Tomei L., De Francesco R. 1994; Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. Journal of Virology 68:3753–3760
    [Google Scholar]
  15. Gorbalenya A., Donchenko A. P., Blinov V. M., Koonin E. V. 1989; Cysteine proteases of positive-strand RNA viruses and chymotrypsin-like serine proteases: a distinct protein superfamily with common structural fold. FEBS Letters 243:103–114
    [Google Scholar]
  16. Hall D. J., Palmenberg A. C. 1996; Cleavage site mutations in the encephalomyocarditis virus P3 region lethally abrogate the normal processing cascade. Journal of Virology 70:5954–5961
    [Google Scholar]
  17. Hämmerle T., Hellen C. U. T., Wimmer E. 1991; Site-directed mutagenesis of the putative catalytic triad of poliovirus 3C proteinase. Journal of Biological Chemistry 266:5412–5416
    [Google Scholar]
  18. Hans F., Sanfaçon H. 1995; Tomato ringspot nepovirus protease: characterization and cleavage site specificity. Journal of General Virology 76:917–927
    [Google Scholar]
  19. Harmon S. A., Updike W., Jia X.-Y., Summers D. F., Ehrenfeld E. 1992; Polyprotein processing in cis and trans by hepatitis A virus 3C protease cloned and expressed in Escherichia coli. Journal of Virology 66:5242–5247
    [Google Scholar]
  20. Hull R. 2001 Matthews’ Plant Virology. London: Academic Press;
    [Google Scholar]
  21. Ivanoff L. A., Towatari T., Ray J., Korant B. D., Petteway S. R. 1986; Expression and site-specific mutagenesis of the poliovirus 3C protease in Escherichia coli. Proceedings of the National Academy of Sciences, USA 83:5392–5396
    [Google Scholar]
  22. Jia X.-Y., Ehrenfeld E., Summers D. F. 1991; Proteolytic activity of hepatitis A virus 3C protein. Journal of Virology 65:2595–2600
    [Google Scholar]
  23. Jore J., de Geus B., Jackson R. J., Pouwels P. H., Enger-Valk B. E. 1988; Poliovirus protein 3CD is the active protease for processing of the precursor protein P1 in vitro. Journal of General Virology 69:1627–1636
    [Google Scholar]
  24. Kean K. M., Teterina N. L., Marc D., Girad M. 1991; Analysis of putative active site residues of the poliovirus 3C protease. Virology 181:609–619
    [Google Scholar]
  25. Kean K. M., Howell M. T., Grünert S., Girard M., Jackson R. J. 1993; Substitution mutations at the putative catalytic triad of the poliovirus 3C protease have differential effects on cleavage at different sites. Virology 194:360–364
    [Google Scholar]
  26. Koonin E. V., Dolja V. V. 1993; Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Critical Reviews in Biochemistry and Molecular Biology 28:375–430
    [Google Scholar]
  27. Lawson M. A., Semler B. L. 1991; Poliovirus thiol proteinase 3C can utilize a serine nucleophile within the putative catalytic triad. Proceedings of the National Academy of Sciences, USA 88:9919–9923
    [Google Scholar]
  28. Margis R., Pinck L. 1992; Effect of site-directed mutagenesis on the presumed catalytic triad and substrate-binding pocket of grapevine fanleaf nepovirus 24-kDa proteinase. Virology 190:884–888
    [Google Scholar]
  29. Margis R., Viry M., Pinck M., Bardonnet N., Pinck L. 1994; Differential proteolytic activities of precursor and mature forms of the 24K proteinase of grapevine fanleaf nepovirus. Virology 200:79–86
    [Google Scholar]
  30. Matthews D. A., Smith W. W., Ferre R. A., Condon B., Budahazi G., Sisson W., Villafranca J. E., Janson C. A., McElroy H. E., Gribskov C. L., Worland S. 1994; Structure of human rhinovirus 3C protease reveals trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77:761–771
    [Google Scholar]
  31. Mavankal G., Rhoads R. E. 1991; In vitro cleavage at or near the N-terminus of the helper component protein in tobacco vein mottling virus polyprotein. Virology 185:721–731
    [Google Scholar]
  32. Nicklin M. J. H., Toyoda H., Murray M. G., Wimmer E. 1986; Proteolytic processing in the replication of polio and related viruses. Biotechnology 4:36–42
    [Google Scholar]
  33. Pallai P. V., Burkhardt F., Skoog M., Schreiner K., Baxt P., Cohen K. A., Hansen G., Palladino D. E. H., Harris K. S., Nicklin M. J. H., Wimmer E. 1989; Cleavage of synthetic peptides by purified poliovirus 3C proteinase. Journal of Biological Chemistry 264:9738–9741
    [Google Scholar]
  34. Palmenberg A. C., Parks G. D., Hall D. J., Ingraham R. H., Seng T. W., Pallai P. V. 1992; Proteolytic processing of the cardioviral P2 region: primary 2A/2B cleavage in clone-derived precursors. Virology 190:754–762
    [Google Scholar]
  35. Pelham H. R. B. 1979; Synthesis and processing of cowpea mosaic virus proteins in reticulocyte lysates. Virology 96:463–477
    [Google Scholar]
  36. Peters S. A., Voorhorst W. G. B., Wery J., Wellink J., van Kammen A. 1992; A regulatory role for the 32K protein in proteolytic processing of cowpea mosaic virus polyproteins. Virology 191:81–89
    [Google Scholar]
  37. Ryan M. D., Flint M. 1997; Virus-encoded proteinases of the picornaviral super-group. Journal of General Virology 78:699–723
    [Google Scholar]
  38. Shen P., Kaniewska M., Smith C., Beachy R. N. 1993; Nucleotide sequence and genomic organization of rice tungro spherical virus. Virology 193:621–630
    [Google Scholar]
  39. Shih D. S., Bu M., Price M. A., Shih C.-Y. T. 1987; Inhibition of cleavage of a plant viral polyprotein by an inhibitor activity present in wheat germ and cowpea embryos. Journal of Virology 61:912–915
    [Google Scholar]
  40. Snijder E. J., Wassenaar A. L. M., van Dinten L. C., Spaan W. J. M., Gorbalenya A. E. 1996; The arterivirus Nsp4 protease is the prototype of a novel group of chymotrypsin-like enzymes, the 3C-like serine protease. Journal of Biological Chemistry 271:4864–4871
    [Google Scholar]
  41. Spall V. E., Shanks M., Lomonossoff G. P. 1997; Polyprotein processing as a strategy for gene expression in RNA viruses. Seminars in Virology 8:15–23
    [Google Scholar]
  42. Thole V., Hull R. 1996; Rice tungro spherical virus: nucleotide sequence of the 3’ genomic half and studies on the 3’ two small open reading frames. Virus Genes 13:239–246
    [Google Scholar]
  43. Thole V., Hull R. 1998; Rice tungro spherical virus polyprotein processing: identification of a virus-encoded protease and mutational analysis of putative cleavage sites. Virology 247:106–114
    [Google Scholar]
  44. Vakharia V. N., Devaney M. A., Moore D. M., Dunn J. J., Grubman M. J. 1987; Proteolytic processing of foot-and-mouth disease virus polyproteins expressed in a cell-free system from clone-derived transcripts. Journal of Virology 61:3199–3207
    [Google Scholar]
  45. Verchot J., Koonin E. V., Carrington J. C. 1991; The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus-encoded proteinase. Virology 185:527–535
    [Google Scholar]
  46. Verchot J., Herndon K. L., Carrington J. C. 1992; Mutational analysis of tobacco etch virus potyviral 35-kDa proteinase: identification of essential residues and requirements for autoproteolysis. Virology 190:298–306
    [Google Scholar]
  47. Ypma-Wong M. F., Dewalt P. G., Johnson V. H., Lamb J. G., Semler B. L. 1988; Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 precursor. Virology 166:265–270
    [Google Scholar]
  48. Zhang S., Jones M. C., Barker P., Davies J. W., Hull R. 1993; Molecular cloning and sequencing of coat protein-encoding cDNA of rice tungro spherical virus – a plant picornavirus. Virus Genes 7:121–132
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-12-3179
Loading
/content/journal/jgv/10.1099/0022-1317-83-12-3179
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error