Conservation of L and 3C proteinase activities across distantly related aphthoviruses Free

Abstract

The foot-and-mouth disease virus (FMDV) leader (L) proteinase is an important virulence determinant in FMDV infections. It possesses two distinct catalytic activities: (i) C-terminal processing at the L/VP4 junction; and (ii) induction of the cleavage of translation initiation factor eIF4G, an event that inhibits cap-dependent translation in infected cells. The only other member of the genus, equine rhinitis A virus (ERAV), also encodes an L protein, but this shares only 32% amino acid identity with its FMDV counterpart. Another more distantly related picornavirus, equine rhinitis B virus (ERBV), which is not classified as an aphthovirus, also encodes an L protein. Using transcription and translation analysis, we have shown that both ERAV and ERBV L proteins have C-terminal processing activity. Furthermore, expression of ERAV L, but not ERBV L, in BHK-21 cells resulted in the efficient inhibition of cap-dependent translation in these cells. We have shown that the ERAV and FMDV L proteinases induce cleavage of eIF4GI at very similar or identical positions. Interestingly, ERAV 3C also induces eIF4GI cleavage and again produces distinct products that co-migrate with those induced by FMDV 3C. The ERBV L proteinase does not induce eIF4GI cleavage, consistent with its inability to shut down cap-dependent translation. We have also shown that another unique feature of FMDV L, the stimulation of enterovirus internal ribosome entry site (IRES) activity, is also shared by the ERAV L proteinase but not by ERBV L. The functional conservation of the divergent ERAV and FMDV proteinases indicates the likelihood of a similar and important role for these enzymes in the pathogenesis of infections caused by these distantly related aphthoviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-12-3111
2002-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/12/0833111a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-12-3111&mimeType=html&fmt=ahah

References

  1. Belsham G. J., Jackson R. J. 2000; Translation initiation in picornavirus RNA. In Translational Control of Gene Expression pp 869–900 Edited by Sonenberg N., Hershey J. W. B., Mathews M. B. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  2. Belsham G. J., McInerney G. M., Ross-Smith N. 2000; Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. Journal of Virology 74:272–280
    [Google Scholar]
  3. Brown C. C., Piccone M. E., Mason P. W., McKenna T. S.-C. 1996; Pathogenesis of wild-type and leaderless foot-and-mouth disease virus in cattle. Journal of Virology 70:5638–5641
    [Google Scholar]
  4. Carman S., Rosendal S., Huber L., Gyles C., McKee S., Willoughby R. A., Dubovi E., Thorsen J., Lein D. 1997; Infectious agents in acute respiratory disease in horses in Ontario. Journal of Veterinary Diagnostic Investigation 9:17–23
    [Google Scholar]
  5. Chinsangaram J., Mason P. W., Grubman M. J. 1998; Protection of swine by live and inactivated vaccines prepared from a leader proteinase-deficient serotype A12 foot-and-mouth disease virus. Vaccine 16:1516–1522
    [Google Scholar]
  6. Chinsangaram J., Piccone M. E., Grubman M. J. 1999; Ability of foot-and-mouth disease virus to form plaques in cell culture is associated with suppression of alpha/beta interferon. Journal of Virology 73:9891–9898
    [Google Scholar]
  7. Chinsangaram J., Koster M., Grubman M. J. 2001; Inhibition of L-deleted foot-and-mouth disease virus replication by alpha/beta interferon involves double-stranded RNA-dependent protein kinase. Journal of Virology 75:5498–5503
    [Google Scholar]
  8. Clark M. E., Hammerle T., Wimmer E., Dasgupta A. 1991; Poliovirus proteinase 3C converts an active form of transcription factor IIIC to an inactive form: a mechanism for inhibition of host cell polymerase III transcription by poliovirus. EMBO Journal 10:2941–2947
    [Google Scholar]
  9. Clarke B. E., Sangar D. V., Burroughs J. N., Newton S. E., Carroll A. R., Rowlands D. J. 1985; Two initiation sites for foot-and-mouth disease virus polyprotein in vivo. Journal of General Virology 66:2615–2626
    [Google Scholar]
  10. Devaney M. A., Vakharia V. N., Lloyd R. E., Ehrenfeld E., Grubman M. J. 1988; Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding complex. Journal of Virology 62:4407–4409
    [Google Scholar]
  11. Falk M. M., Grigera P. R., Bergmann I. E., Zibert A., Multhaup G., Beck E. 1990; Foot-and-mouth disease virus protease 3C induces specific proteolytic cleavage of host cell histone H3. Journal of Virology 64:748–756
    [Google Scholar]
  12. Fuerst T. R., Niles E. G., Studier W., Moss B. 1986; Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proceedings of the National Academy of Sciences, USA 83:8122–8126
    [Google Scholar]
  13. Guarné A., Tormo J., Kirchweger R., Pfistermueller D., Fita I., Skern T. 1998; Structure of the foot-and-mouth disease virus leader protease: a papain-like fold adapted for self-processing and eIF4G recognition. EMBO Journal 17:7469–7479
    [Google Scholar]
  14. Guarné A., Hampoelz B., Glaser W., Carpena X., Tormo J., Fita I., Skern T. 2000; Structural and biochemical features distinguish the foot-and-mouth disease virus leader proteinase from other papain-like enzymes. Journal of Molecular Biology 302:1227–1240
    [Google Scholar]
  15. Hinton T. M., Crabb B. S. 2001; The novel picornavirus equine rhinitis B virus contains a strong type II internal ribosomal entry site which functions similarly to that of encephalomyocarditis virus. Journal of General Virology 82:2257–2269
    [Google Scholar]
  16. Hinton T. M., Li F., Crabb B. S. 2000; Internal ribosomal entry site-mediated translation initiation in equine rhinitis A virus: similarities to and differences from that of foot-and-mouth disease virus. Journal of Virology 74:11708–11716
    [Google Scholar]
  17. Kaminski A., Howell M. T., Jackson R. J. 1990; Initiation of encephalomyocarditis virus RNA translation: the authentic initiation site is not selected by a scanning mechanism. EMBO Journal 9:3753–3759
    [Google Scholar]
  18. Kirchweger R., Ziegler E., Lamphear B. J., Waters D., Liebig H. D., Sommergruber W., Sobrino F., Hohenadl C., Blaas D., Rhoads R. E., Skern T. 1994; Foot-and-mouth disease virus leader proteinase: purification of the Lb form and determination of its cleavage site on eIF-4 gamma. Journal of Virology 68:5677–5684
    [Google Scholar]
  19. Krausslich H. G., Nicklin M. J., Toyoda H., Etchison D., Wimmer E. 1987; Poliovirus proteinase 2A induces cleavage of eucaryotic initiation factor 4F polypeptide p220. Journal of Virology 61:2711–2718
    [Google Scholar]
  20. Li F., Browning G. F., Studdert M. J., Crabb B. S. 1996; Equine rhinovirus 1 is more closely related to foot-and-mouth disease virus than to other picornaviruses. Proceedings of the National Academy of Sciences, USA 93:990–995
    [Google Scholar]
  21. Li F., Drummer H. E., Ficorilli N., Studdert M. J., Crabb B. S. 1997; Identification of noncytopathic equine rhinovirus 1 as a cause of acute febrile respiratory disease in horses. Journal of Clinical Microbiology 35:937–943
    [Google Scholar]
  22. Li W., Belsham G. J., Proud C. G. 2001; Eukaryotic initiation factors 4A (eIF4A) and 4G (eIF4G) mutually interact in a 1: 1 ratio in vivo. Journal of Biological Chemistry 276:29111–29115
    [Google Scholar]
  23. Mason P. W., Piccone M. E., McKenna T. S., Chinsangaram J., Grubman M. J. 1997; Evaluation of a live-attenuated foot-and-mouth disease virus as a vaccine candidate. Virology 227:96–102
    [Google Scholar]
  24. Mayr G. A., O’Donnell V., Chinsangaram J., Mason P. W., Grubman M. J. 2001; Immune responses and protection against foot-and-mouth disease virus (FMDV) challenge in swine vaccinated with adenovirus–FMDV constructs. Vaccine 19:2152–2162
    [Google Scholar]
  25. Medina M., Domingo E., Brangwyn J. K., Belsham G. J. 1993; The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology 194:355–359
    [Google Scholar]
  26. Newman J., Rowlands D. J., Brown F. 1973; A physico-chemical sub-grouping of the mammalian picornaviruses. Journal of General Virology 18:171–180
    [Google Scholar]
  27. Newman J. F. E., Rowland D. J., Brown F., Goodridge D., Burrows R., Steck F. 1977; Physicochemical characterization of two serologically unrelated equine rhinovirus. Intervirology 8:145–154
    [Google Scholar]
  28. Pestova T. V., Shatsky I. N., Hellen C. U. 1996; Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Molecular and Cellular Biology 16:6870–6878
    [Google Scholar]
  29. Piccone M. E., Rieder E., Mason P. W., Grubman M. J. 1995a; The foot-and-mouth disease virus leader proteinase gene is not required for viral replication. Journal of Virology 69:5376–5382
    [Google Scholar]
  30. Piccone M. E., Sira S., Zellner M., Grubman M. J. 1995b; Expression in Escherichia coli and purification of biologically active L proteinase of foot-and-mouth disease virus. Virus Research 35:263–275
    [Google Scholar]
  31. Plummer G. 1962; An equine respiratory virus with enterovirus properties. Nature 195:519–520
    [Google Scholar]
  32. Pringle C. R. 1997; Virus taxonomy 1997. Archives of Virology 142:1727–1733
    [Google Scholar]
  33. Pringle C. R. 1999; Virus taxonomy at the XIth International Congress of Virology, Sydney, Australia, 1999. Archives of Virology 144:2065–2070
    [Google Scholar]
  34. Roberts L. O., Seamons R. A., Belsham G. J. 1998; Recognition of picornavirus internal ribosome entry sites within cells: influence of cellular and viral proteins. RNA 4:520–529
    [Google Scholar]
  35. Ryan M. D., Flint M. 1997; Virus-encoded proteinases of the picornavirus super-group. Journal of General Virology 78:699–723
    [Google Scholar]
  36. Sakoda Y., Ross-Smith N., Inoue T., Belsham G. J. 2001; An attenuating mutation in the 2A protease of swine vesicular disease virus, a picornavirus, regulates cap- and internal ribosome entry site-dependent protein synthesis. Journal of Virology 75:10643–10650
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Sangar D. V., Newton S. E., Rowlands D. J., Clarke B. E. 1987; All foot and mouth disease virus serotypes initiate protein synthesis at two separate AUGs. Nucleic Acids Research 15:3305–3315
    [Google Scholar]
  39. Skern T., Fita I., Guarné A. 1998; A structural model of picornavirus leader proteinases based on papain and bleomycin hydrolase. Journal of General Virology 79:301–307
    [Google Scholar]
  40. Steck F., Hofer B., Schaeren B., Nicolet J., Gerber H. 1978; Equine rhinoviruses: new serotypes. In Proceedings of the 4th International Conference on Equine Infectious Diseases pp 321–328 Edited by Bryans J. T., Gerber H. Basel: Karger Veterinary Publications;
    [Google Scholar]
  41. Strebel K., Beck E. 1986; A second protease of foot-and-mouth disease virus. Journal of Virology 58:893–899
    [Google Scholar]
  42. Studdert M. J. 1996; Equine rhinovirus infections. In Virus Infections of Equines pp 213–217 Edited by Studdert M. J. Amsterdam: Elsevier;
    [Google Scholar]
  43. Studdert M. J., Gleeson L. J. 1978; Isolation and characterisation of an equine rhinovirus. Zentralblatt fuer Veterinaermedizin Reihe B 25:225–237
    [Google Scholar]
  44. van Pesch V., van Eyll O., Michiels T. 2001; The leader protein of Theiler’s virus inhibits immediate-early alpha/beta interferon production. Journal of Virology 75:7811–7817
    [Google Scholar]
  45. Warner S., Hartley C. A., Stevenson R. A., Ficorilli N., Varrasso A., Studdert M. J., Crabb B. S. 2001; Evidence that equine rhinitis A virus VP1 is a target of neutralizing antibodies and participates directly in receptor binding. Journal of Virology 75:9274–9281
    [Google Scholar]
  46. Wutz G., Auer H., Nowotny N., Grosse B., Skern T., Kuechler E. 1996; Equine rhinovirus serotypes 1 and 2: relationship to each other and to aphthoviruses and cardioviruses. Journal of General Virology 77:1719–1730
    [Google Scholar]
  47. Yalamanchili P., Datta U., Dasgupta A. 1997a; Inhibition of host cell transcription by poliovirus: cleavage of transcription factor CREB by poliovirus-encoded protease 3Cpro. Journal of Virology 71:1220–1226
    [Google Scholar]
  48. Yalamanchili P., Weidman K., Dasgupta A. 1997b; Cleavage of transcriptional activator Oct-1 by poliovirus encoded protease 3Cpro. Virology 239:176–185
    [Google Scholar]
  49. Ziegler E., Borman A. M., Kirchweger R., Skern T., Kean K. M. 1995; Foot-and-mouth disease virus Lb proteinase can stimulate rhinovirus and enterovirus IRES-driven translation and cleave several proteins of cellular and viral origin. Journal of Virology 69:3465–3474
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-12-3111
Loading
/content/journal/jgv/10.1099/0022-1317-83-12-3111
Loading

Data & Media loading...

Most cited Most Cited RSS feed