1887

Abstract

Vaccinia virus (VV) infects a broad range of host cells, and while it usually causes their lysis (i.e. necrosis), the nature of the cell-death phenomenon is not well understood. In this study, we show that VV induces apoptosis of cells of the murine macrophage line J774.G8, as revealed by morphological signs, DNA ladder formation, changes of mitochondrial membrane potential and annexin-V positivity. Apoptosis occurred in both untreated and IFN-γ-pretreated macrophages, and could not be inhibited by aminoguanidine, a relatively specific inhibitor of inducible nitric oxide synthase. Inhibition of VV DNA synthesis and late gene expression by cytosine arabinoside also did not prevent apoptosis, while heat- or psoralen/UV-inactivated VV did not cause any apoptosis. Thus, VV early gene expression seems to be required for induction of apoptosis. At the cellular level, infection with VV induced a decrease in the levels of Bcl-x, an anti-apoptotic member of the Bcl-2 family. The importance of loss of Bcl-x was demonstrated by prevention of VV-mediated apoptosis on expression of Bcl-2, a functional homologue of Bcl-x. Our findings provide evidence that induction of apoptosis by VV in macrophages requires virus early gene expression, does not involve nitric oxide, induces a decrease in mitochondrial membrane potential and is associated with altered levels of Bcl-x.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-11-2821
2002-11-01
2020-12-04
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/11/0832821a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-11-2821&mimeType=html&fmt=ahah

References

  1. Akaike T., Noguchi Y., Ijiri S., Setoguchi K., Suga M., Zheng Y. M., Dietzschold B., Maeda H.. 1996; Pathogenesis of influenza virus-induced pneumonia: involvement of both nitric oxide and oxygen radicals. Proceedings of the National Academy of Sciences, USA93:2448–2453
    [Google Scholar]
  2. Akaike T., Suga M., Maeda H.. 1998; Free radicals in viral pathogenesis: molecular mechanisms involving superoxide and NO. Proceedings of the Society for Experimental Biology and Medicine217:64–73
    [Google Scholar]
  3. Alcamí A., Koszinowski U. H.. 2000; Viral mechanisms of immune evasion. Molecular Medicine Today6:365–372
    [Google Scholar]
  4. Bablanian R., Scribani S., Esteban M.. 1993; Amplification of polyadenylated nontranslated small RNA sequences (POLADS) during superinfection correlates with the inhibition of viral and cellular protein synthesis. Cellular & Molecular Biology Research39:243–255
    [Google Scholar]
  5. Baixeras E., Cebrian A., Albar J. P., Salas J., Martinez-A C., Vinuela E., Revilla Y.. 1998; Vaccinia virus-induced apoptosis in immature B lymphocytes: role of cellular Bcl-2. Virus Research58:107–113
    [Google Scholar]
  6. Barry M., McFadden G.. 1998; Apoptosis regulators from DNA viruses. Current Opinion in Immunology10:422–430
    [Google Scholar]
  7. Becker Y., Joklik W. K.. 1964; Messenger RNA in cells infected with vaccinia virus. Proceedings of the National Academy of Sciences, USA51:577–585
    [Google Scholar]
  8. Bird P. I.. 1998; Serpins and regulation of cell death. Results and Problems in Cell Differentiation24:63–89
    [Google Scholar]
  9. Bogle R. G., Baydoun A. R., Pearson J. D., Moncada S., Mann G. E.. 1992; l-Arginine transport is increased in macrophages generating nitric oxide. Biochemical Journal284:15–18
    [Google Scholar]
  10. Buchmeier N. A., Gee S. R., Murphy F. A., Rawls W. E.. 1979; Abortive replication of vaccinia virus in activated rabbit macrophages. Infection and Immunity26:328–338
    [Google Scholar]
  11. Buendia B., Person-Fernandez A., Beaud G., Madjar J.. 1987; Ribosomal protein phosphorylation in vivo and in vitro by vaccinia virus. European Journal of Biochemistry162:95–103
    [Google Scholar]
  12. Buller R. M. L., Palumbo G. J.. 1991; Poxvirus pathogenesis. Microbiological Reviews55:80–122
    [Google Scholar]
  13. Cacoullos N., Bablanian R.. 1991; Polyadenylated RNA sequences produced in vaccinia virus-infected cells under aberrant conditions inhibit protein synthesis in vitro. Virology184:747–751
    [Google Scholar]
  14. Celli A., Que F. G., Gores G. J., LaRusso N. F.. 1998; Glutathione depletion is associated with decreased Bcl-2 expression and increased apoptosis in cholangiocytes. American Journal of Physiology275:749–757
    [Google Scholar]
  15. Chang H. W., Watson J. C., Jacobs B. L.. 1992; The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proceedings of the National Academy of Sciences, USA89:4825–4829
    [Google Scholar]
  16. Colby C., Jurale C., Kates J. R.. 1971; Mechanism of synthesis of vaccinia virus double-stranded ribonucleic acid in vivo and in vitro. Journal of Virology71:71–76
    [Google Scholar]
  17. Corbett J. A., Tilton R. G., Chang K., Hasan K. S., Ido Y., Wang J. L., Sweetland M. A., Lancaster J. R. Jr, Williamson J. R., McDaniel M. L.. 1992; Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes41:552–556
    [Google Scholar]
  18. Darzynkiewicz Z., Traganos F., Staiano-Coico L., Kapuscinski J., Melamed M. R.. 1982; Interaction of rhodamine 123 with living cells studied by flow cytometry. Cancer Research42:799–806
    [Google Scholar]
  19. Davies M. V., Elroy-Stein O., Jagus R., Moss B., Kaufman R. J.. 1992; The vaccinia virus K3L gene product potentiates translation by inhibiting double-stranded-RNA-activated protein kinase and phosphorylation of the alpha subunit of eukaryotic initiation factor 2. Journal of Virology66:1943–1950
    [Google Scholar]
  20. Dawson V. L., Dawson T. M., Uhl G. R., Snyder S. H.. 1993; Human immunodeficiency virus type 1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures. Proceedings of the National Academy of Sciences, USA90:3256–3259
    [Google Scholar]
  21. Diaz-Guerra M., Rivas C., Esteban M.. 1997; Activation of the IFN-inducible enzyme RNase L causes apoptosis of animal cells. Virology236:354–363
    [Google Scholar]
  22. Drillien R., Spehner D., Bohbot A., Hanau D.. 2000; Vaccinia virus-related events and phenotypic changes after infection of dendritic cells derived from human monocytes. Virology268:471–481
    [Google Scholar]
  23. Engelmayer J., Larsson M., Subklewe M., Chahroudi A., Cox W. I., Steinman R. M., Bhardwaj N.. 1999; Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. Journal of Immunology163:6762–6768
    [Google Scholar]
  24. Esteban M., Metz D. H.. 1973; Early virus protein synthesis in vaccinia infected cells. Journal of General Virology19:201–216
    [Google Scholar]
  25. Everett H., Barry M., Lee S. F., Sun X., Graham K., Stone J., Bleackley R. C., McFadden G.. 2000; M11L. A novel mitochondria-localized protein of myxoma virus that blocks apoptosis of infected leukocytes. Journal of Experimental Medicine191:1487–1498
    [Google Scholar]
  26. Fujimoto I., Pan J., Takizawa T., Nakanishi Y.. 2000; Virus clearance through apoptosis-dependent phagocytosis of influenza A virus-infected cells by macrophages. Journal of Virology74:3399–3403
    [Google Scholar]
  27. Gagliardini V., Fernandez P. A., Lee R. K., Drexler H. C., Rotello R. J., Fishman M. C., Yuan J.. 1994; Prevention of vertebrate neuronal death by the crmA gene. Science263:826–828
    [Google Scholar]
  28. Gil J., Alcami J., Esteban M.. 1999; Induction of apoptosis by double-stranded-RNA-dependent protein kinase (PKR) involves the alpha subunit of eukaryotic translation initiation factor 2 and NF-kappaB. Molecular and Cellular Biology19:4653–4663
    [Google Scholar]
  29. Gillardon F., Wickert H., Zimmermann M.. 1995; Up-regulation of bax and down-regulation of bcl-2 is associated with kainate-induced apoptosis in mouse brain. Neuroscience Letters192:85–88
    [Google Scholar]
  30. Gonzalo J. A., Gonzalez-Garcia A., Kalland T., Hedlung G., Martinez C., Kroemer G.. 1994; Linomide inhibits programmed cell death of peripheral T cells in vivo. European Journal of Immunology24:48–52
    [Google Scholar]
  31. Griess P.. 1879; Bemergungen zu der Abhandlung der HH. Weselsky und Benedikt ‘Ueber einige Azoverbindungen’. Chemische Berichte12:426–428
    [Google Scholar]
  32. Haig D. M.. 1998; Poxvirus interference with the host cytokine response. Veterinary Immunology and Immunopathology63:149–156
    [Google Scholar]
  33. Harlow E., Lane D.. 1988; Antibodies: a Laboratory Manual pp471–510 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Ignatius R., Marovich M., Mehlhop E., Villamide L., Mahnke K., Cox W. I., Isdell F., Frankel S. S., Mascola J. R., Steinman R. M., Pope M.. 2000; Canarypox virus-induced maturation of dendritic cells is mediated by apoptotic cell death and tumor necrosis factor alpha secretion. Journal of Virology74:11329–11338
    [Google Scholar]
  35. Jelinkova A., Benda R., Novak M.. 1975; Electron microscopy study of the development of neurovaccinia virus in rabbit blood leucocytes cultures. Journal of Hygiene, Epidemiology, Microbiology, and Immunology19:321–328
    [Google Scholar]
  36. Joklik W. K.. 1962; The purification of four strains of poxviruses. Virology18:9–18
    [Google Scholar]
  37. Karupiah G., Xie Q., Buller R. M. L., Nathan C., Duarte C., MacMicking J. D.. 1993; Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science261:1445–1448
    [Google Scholar]
  38. Kibler K. V., Shors T., Perkins K. B., Zeman C. C., Banaszak M. P., Biesterfeldt J., Langland J. O., Jacobs B. L.. 1997; Double-stranded RNA is a trigger for apoptosis in vaccinia virus-infected cells. Journal of Virology71:1992–2003
    [Google Scholar]
  39. Kit S., Dubbs D. R.. 1962; Biochemistry of vaccinia-infected mouse fibroblasts (strain L-M). Virology18:274–285
    [Google Scholar]
  40. Korsmeyer S. J.. 1999; BCL-2 gene family and the regulation of programmed cell death. Cancer Research59:1693–1700
    [Google Scholar]
  41. Kroemer G.. 1997; The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nature Medicine3:614–620
    [Google Scholar]
  42. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685
    [Google Scholar]
  43. Lee S. B.. 1994; Characterization of interferon-induced double-stranded RNA-activated protein kinase . Thesis School of Graduate Studies, State University of New York, Health Science Center at Brooklyn;
  44. Lee S. B., Esteban M.. 1994; The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis. Virology199:491–496
    [Google Scholar]
  45. Macen J., Takahashi A., Moon K. B., Nathaniel R., Turner P. C., Moyer R. W.. 1998; Activation of caspases in pig kidney cells infected with wild-type and CrmA/SPI-2 mutants of cowpox and rabbitpox viruses. Journal of Virology72:3524–3533
    [Google Scholar]
  46. Mackett M., Smith G. L., Moss B.. 1982; Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proceedings of the National Academy of Sciences, USA79:7415–7419
    [Google Scholar]
  47. McLaren C., Cheng H., Spicer D. L., Tompkins W. A.. 1976; Lymphocyte and macrophage responses after vaccinia virus infections. Infection and Immunity14:1014–1021
    [Google Scholar]
  48. Mělková Z.. 1995; Macrophage antiviral activity: role of IFN γ and nitric oxide in the inhibition of vaccinia virus growth in macrophages . Thesis School of Graduate Studies, State University of New York, Health Science Center at Brooklyn;
  49. Mělková Z., Esteban M.. 1994; Interferon-gamma severely inhibits DNA synthesis of vaccinia virus in a macrophage cell line. Virology198:731–735
    [Google Scholar]
  50. Mikami S., Kawashima S., Kanazawa K., Hirata K., Katayama Y., Hotta H., Hayashi Y., Ito H., Yokoyama M.. 1996; Expression of nitric oxide synthase in a murine model of viral myocarditis induced by coxsackievirus B3. Biochemical and Biophysical Research Communications220:983–989
    [Google Scholar]
  51. Moss B.. 1990; Regulation of vaccinia virus transcription. Annual Review of Biochemistry59:661–688
    [Google Scholar]
  52. Nash P., Barrett J., Cao J. X., Hota-Mitchell S., Lalani A. S., Everett H., Xu X. M., Robichaud J., Hnatiuk S., Ainslie C., Seet B. T., McFadden G.. 1999; Immunomodulation by viruses: the myxoma virus story. Immunological Reviews168:103–120
    [Google Scholar]
  53. Nathan C.. 1992; Nitric oxide as a secretory product of mammalian cells. FASEB Journal6:3051–3064
    [Google Scholar]
  54. Nathan C. F., Hibs J. B.. 1991; Role of nitric oxide synthesis in macrophage antimicrobial activity. Current Opinion in Immunology3:65–70
    [Google Scholar]
  55. Natuk R. J., Holowczak J. A.. 1985; Vaccinia virus proteins on the plasma membrane of infected cells. III. Infection of peritoneal macrophages. Virology147:354–372
    [Google Scholar]
  56. Oltvai Z. N., Milliman C. L., Korsmeyer S. J.. 1993; Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell74:609–619
    [Google Scholar]
  57. Paez E., Esteban M.. 1984; Resistance of vaccinia virus to interferon is related to an interference phenomenon between the virus and the interferon system. Virology134:12–28
    [Google Scholar]
  58. Ramsey-Ewing A., Moss B.. 1998; Apoptosis induced by a postbinding step of vaccinia virus entry into Chinese hamster ovary cells. Virology242:138–149
    [Google Scholar]
  59. Reed J. C., Jurgensmeier J. M., Matsuyama S.. 1998; Bcl-2 family proteins and mitochondria. Biochimica et Biophysica Acta1366:127–137
    [Google Scholar]
  60. Reiss C. S., Komatsu T. J.. 1998; Does nitric oxide play a critical role in viral infections?. Journal of Virology72:4547–4551
    [Google Scholar]
  61. Rivas C., Gil J., Melkova Z., Esteban M., Diaz-Guerra M.. 1998; Vaccinia virus E3L protein is an inhibitor of the interferon (IFN)-induced 2-5A synthetase enzyme. Virology243:406–414
    [Google Scholar]
  62. Rodriguez J. F., Rodriguez D., Rodriguez J. R., McGowan E., Esteban M.. 1989; Expression of the firefly luciferase gene in vaccinia virus: a highly sensitive gene marker to follow virus dissemination in tissues of infected animals. Proceedings of the National Academy of Sciences, USA85:1667–1671
    [Google Scholar]
  63. Rodriguez J. R., Rodriguez D., Esteban M.. 1991; Interferon treatment inhibits early events in vaccinia virus gene expression in infected mice. Virology185:929–933
    [Google Scholar]
  64. Ronen D., Schwartz D., Teitz Y., Goldfinger N., Rotter V.. 1996; Induction of HL-60 cells to undergo apoptosis is determined by high levels of wild-type p53 protein whereas differentiation of the cells is mediated by lower p53 levels. Cell Growth & Differentiation7:21–30
    [Google Scholar]
  65. Roulston A., Marcellus R. C., Branton P. E.. 1999; Viruses and apoptosis. Annual Review of Microbiology53:577–628
    [Google Scholar]
  66. Sarih M., Souvannavong V., Adam A.. 1993; Nitric oxide synthase induces macrophage death by apoptosis. Biochemical and Biophysical Research Communications191:503–508
    [Google Scholar]
  67. Shatkin A. J.. 1963; Actinomycin D and vaccinia virus infection of HeLa cells. Nature199:357–358
    [Google Scholar]
  68. Smith G. L., Symons J. A., Khanna A., Vanderplasschen A., Alcami A.. 1997; Vaccinia virus immune evasion. Immunological Reviews159:137–154
    [Google Scholar]
  69. Smith G. L., Symons J. A., Alcami A.. 1999; Immune modulation by proteins secreted from cells infected by vaccinia virus. Archives of Virology Supplement15:111–129
    [Google Scholar]
  70. Stuehr D. J., Nathan C. F.. 1989; Nitric oxide: a macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. Journal of Experimental Medicine169:1543–1545
    [Google Scholar]
  71. Su M. J., Bablanian R.. 1990; Polyadenylated RNA sequences from vaccinia virus-infected cells selectively inhibit translation in a cell-free system: structural properties and mechanism of inhibition. Virology179:679–693
    [Google Scholar]
  72. Teodoro J. G., Branton P. E.. 1997; Regulation of apoptosis by viral gene products. Journal of Virology71:1739–1746
    [Google Scholar]
  73. Timiryasova T. M., Li J., Chen B., Chong D., Langridge W. H., Gridley D. S., Fodor I.. 1999; Antitumor effect of vaccinia virus in glioma model. Oncology Research11:133–144
    [Google Scholar]
  74. van den Broek M. F., Muller U., Huang S., Aguet M., Zinkernagel R. M.. 1995; Antiviral defense in mice lacking both alpha/beta and gamma interferon receptors. Journal of Virology69:4792–4796
    [Google Scholar]
  75. Zheng Z. M., Schöfer M. K. H., Weihe E., Sheng H., Corisdeo S., Fu Z. F., Koprowski H., Dietzschold B.. 1993; In vivo expression of inducible nitric oxide synthase in experimentally induced neurologic diseases. Proceedings of the National Academy of Sciences, USA90:3024–3027
    [Google Scholar]
  76. Zhou A., Paranjape J., Brown T. L., Nie H., Naik S., Dong B., Chang A., Trapp B., Fairchild R., Colmenares C., Silverman R. H.. 1997; Interferon action and apoptosis are defective in mice devoid of 2′,5′-oligoadenylate-dependent RNase L. EMBO Journal16:6355–6363
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-11-2821
Loading
/content/journal/jgv/10.1099/0022-1317-83-11-2821
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error