1887

Abstract

Herpesvirus immediate-early (IE) gene products play key roles in establishing productive infections, regulating reactivation from latency and evading immune recognition. Analyses of HHV-6 IE gene expression have revealed that the IE1 gene of the HHV-6A and HHV-6B variants exhibits a higher degree of sequence variation than other regions of the genome and no obvious similarity to its positional analogue in HCMV. We have analysed expression of the HHV-6 U1102 (HHV-6A) and Z29 (HHV-6B) IE1 gene products using transient expression vectors, stable cell lines and in the context of lytic virus infection. The IE1 transcripts from both variants demonstrate a similar pattern of splice usage within their translated regions. The HHV-6 IE1 proteins from both variants traffic to, and form a stable interaction with, PML-bodies (also known as ND10 or PODS). Remarkably, PML-bodies remained structurally intact and associated with the IE1 protein throughout lytic HHV-6 infection. Immunoprecipitation studies demonstrated that HHV-6 IE1 from both variants is covalently modified by conjugation to the small ubiquitin-like protein SUMO-1. Overexpression of SUMO-1 in cell lines resulted in substantially enhanced levels of IE1 expression; thus sumoylation may bestow stability to the protein. These results indicate that the HHV-6 IE1 protein interacts with PML-bodies yet, unlike other herpesviruses, HHV-6 appears to have no requirement or mechanism to induce PML-body dispersal during lytic replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-11-2811
2002-11-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/11/0832811a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-11-2811&mimeType=html&fmt=ahah

References

  1. Adamson A. L., Kenney S.. 2001; Epstein–Barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. Journal of Virology75:2388–2399
    [Google Scholar]
  2. Ahn J. H., Hayward G. S.. 1997; The major immediate-early proteins IE1 and IE2 of human cytomegalovirus colocalize with and disrupt PML-associated nuclear bodies at very early times in infected permissive cells. Journal of Virology71:4599–4613
    [Google Scholar]
  3. Ahn J. H., Jang W. J., Hayward G. S.. 1999; The human cytomegalovirus IE2 and UL112–113 proteins accumulate in viral DNA replication compartments that initiate from the periphery of promyelocytic leukemia protein-associated nuclear bodies (PODs or ND10). Journal of Virology73:10458–10471
    [Google Scholar]
  4. Bonilla W. V., Pinschewer D. D., Klenerman P., Rousson V., Gaboli M., Pandolfi P. P., Zinkernagel R. M., Salvato M. S., Hengartner H.. 2002; Effects of promyelocytic leukemia protein on virus–host balance. Journal of Virology76:3810–3818
    [Google Scholar]
  5. Boom R., Sol C. J., Salimans M. M., Jansen C. L., Wertheim-van Dillen P. M., van der Noordaa J.. 1990; Rapid and simple method for purification of nucleic acids. Journal of Clinical Microbiology28:495–503
    [Google Scholar]
  6. Brenmer J. A. G., Clark D. A.. 1999; The clinical implications of human herpesvirus-6 infection. Reviews in Medical Microbiology10:11–18
    [Google Scholar]
  7. Carvalho T., Seeler J. S., Ohman K., Jordan P., Pettersson U., Akusjarvi G., Carmo-Fonseca M., Dejean A.. 1995; Targeting of adenovirus E1A and E4-ORF3 proteins to nuclear matrix-associated PML bodies. Journal of Cell Biology131:45–56
    [Google Scholar]
  8. Caserta M. T., Mock D. J., Dewhurst S.. 2001; Human herpesvirus-6. Clinical Infectious Diseases33:829–833
    [Google Scholar]
  9. Day P. M., Roden R. B., Lowy D. R., Schiller J. T.. 1998; The papillomavirus minor capsid protein, L2, induces localization of the major capsid protein, L1, and the viral transcription/replication protein, E2, to PML oncogenic domains. Journal of Virology72:142–150
    [Google Scholar]
  10. DesJardin J. A., Gibbons L., Cho E., Supran S. E., Falagas M. E., Werner B. G., Snydman D. R.. 1998; Human herpesvirus-6 reactivation is associated with cytomegalovirus infection and syndromes in kidney transplant recipients at risk for primary cytomegalovirus infection. Journal of Infectious Diseases178:1783–1786
    [Google Scholar]
  11. Desterro J. M., Rodriguez M. S., Hay R. T.. 1998; SUMO-1 modification of IκBα inhibits NF-κB activation. Molecular Cell2:233–239
    [Google Scholar]
  12. Dominguez G., Dambaugh T. R., Stamey F. R., Dewhurst S., Inoue N., Pellett P. E.. 1999; Human herpesvirus-6B genome sequence: coding content and comparison with human herpesvirus-6A. Journal of Virology73:8040–8052
    [Google Scholar]
  13. Everett R. D., Maul G. G.. 1994; HSV-1 IE protein Vmw110 causes redistribution of PML. EMBO Journal13:5062–5069
    [Google Scholar]
  14. Fox J. D., Briggs M., Ward P. A., Tedder R. S.. 1990; Human herpesvirus-6 in salivary glands. Lancet336:590–593
    [Google Scholar]
  15. Gompels U. A., Nicholas J., Lawrence G., Jones M., Thomson B. J., Martin M. E. D., Efstathiou S., Craxton M., Macaulay H. A.. 1995; The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology209:29–51
    [Google Scholar]
  16. Goodson M. L., Hong Y., Rogers R., Matunis M. J., Park-Sarge O. K., Sarge K. D.. 2001; Sumo-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body-associated transcription factor. Journal of Biological Chemistry276:18513–18518
    [Google Scholar]
  17. Hofmann H., Floss S., Stamminger T.. 2000; Covalent modification of the transactivator protein IE2-p86 of human cytomegalovirus by conjugation to the ubiquitin-homologous proteins SUMO-1 and hSMT3b. Journal of Virology74:2510–2524
    [Google Scholar]
  18. Hong Y., Rogers R., Matunis M. J., Mayhew C. N., Goodson M., Park-Sarge O. K., Sarge K. D.. 2001; Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. Journal of Biological Chemistry276:40263–40267
    [Google Scholar]
  19. Irving W. L., Ratnamohan V. M., Hueston L. C., Chapman J. R., Cunningham A. L.. 1990; Dual antibody rises to cytomegalovirus and human herpesvirus type 6: frequency of occurrence in CMV infections and evidence for genuine reactivity to both viruses. Journal of Infectious Diseases161:910–916
    [Google Scholar]
  20. Isegawa Y., Mukai T., Nakano K., Kagawa M., Chen J., Mori Y., Sunagawa T., Kawanishi K., Sashihara J., Hata A., Zou P., Kosuge H., Yamanishi K.. 1999; Comparison of the complete DNA sequences of human herpesvirus-6 variants A and B. Journal of Virology73:8053–8063
    [Google Scholar]
  21. Ishov A. M.. 1999; PML is critical for ND10 formation and recruits the PML-interacting protein Daxx to this structure when modified by SUMO-1. Journal of Cell Biology147:221–234
    [Google Scholar]
  22. Ishov A. M., Maul G. G.. 1996; The periphery of nuclear domain 10 (ND10) as a site of DNA virus deposition. Journal of Cell Biology134:815–826
    [Google Scholar]
  23. Jiang W. Q., Szekely L., Klein G., Ringertz N.. 1996; Intranuclear redistribution of SV40T, p53, and PML in a conditionally SV40T-immortalized cell line. Experimental Cell Research229:289–300
    [Google Scholar]
  24. Katano H., Ogawa-Goto K., Hasegawa H., Kurata T., Sata T.. 2001; Human-herpesvirus-8-encoded K8 protein colocalizes with the promyelocytic leukemia protein (PML) bodies and recruits p53 to the PML bodies. Virology286:446–455
    [Google Scholar]
  25. Kondo K., Kondo T., Okuno T., Takahashi M., Yamanishi K.. 1991; Latent human herpesvirus-6 infection of human monocytes/macrophages. Journal of General Virology72:1401–1408
    [Google Scholar]
  26. Kondo K., Shimada K., Sashihara J., Tanaka-Taya K., Yamanishi K.. 2002; Identification of human herpesvirus-6 latency-associated transcripts. Journal of Virology76:4145–4151
    [Google Scholar]
  27. Lafemina R. L., Pizzorno M. C., Mosca J. D., Hayward G. S.. 1989; Expression of the acidic nuclear immediate-early protein (IE1) of human cytomegalovirus in stable cell lines and its preferential association with metaphase chromosomes. Virology172:584–600
    [Google Scholar]
  28. Lukac D. M., Manuppello J. R., Alwine J. C.. 1994; Transcriptional activation by the human cytomegalovirus immediate-early proteins: requirements for simple promoter structures and interactions with multiple components of the transcription complex. Journal of Virology68:5184–5193
    [Google Scholar]
  29. Mao Y., Desai S. D., Liu L. F.. 2000; SUMO-1 conjugation to human DNA topoisomerase II isozymes. Journal of Biological Chemistry275:26066–26073
    [Google Scholar]
  30. Maul G. G., Ishov A. M., Everett R. D.. 1996; Nuclear domain 10 as pre-existing potential replication start sites of herpes simplex virus type-1. Virology217:67–75
    [Google Scholar]
  31. Mirandola P., Menegazzi P., Merighi S., Ravaioli T., Cassai E., DiLuca D.. 1998; Temporal mapping of transcripts in herpesvirus 6 variants. Journal of Virology72:3837–3844
    [Google Scholar]
  32. Mocarski E. S., Kemble G. W., Lyle J. M., Greaves R. F.. 1996; A deletion mutant in the human cytomegalovirus encoding IE1 is replication defective due to a failure in autoregulation. Proceedings of the National Academy of Sciences, USA93:11321–11326
    [Google Scholar]
  33. Muller S., Dejean A.. 1999; Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. Journal of Virology73:5137–5143
    [Google Scholar]
  34. Muller S., Matunis M. J., Dejean A.. 1998; Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO Journal17:61–70
    [Google Scholar]
  35. Murges D., Quadt I., Schroer J., Knebel-Morsdorf D.. 2001; Dynamic nuclear localization of the baculovirus proteins IE2 and PE38 during the infection cycle: the promyelocytic leukemia protein colocalizes with IE2. Experimental Cell Research264:219–232
    [Google Scholar]
  36. Neipel F., Ellinger K., Fleckenstein B.. 1992; The unique region of the human herpesvirus-6 genome is essentially collinear with the UL segment of human cytomegalovirus. Journal of General Virology72:2293–2297
    [Google Scholar]
  37. Pellett P. E., Black J. B.. 1996; Human herpesvirus 6. In Fields Virology pp2587–2608 Edited by Fields B. N., Knipe D. M., Howley P. M.. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  38. Rodriguez M. S., Desterro J. M., Lain S., Midgley C. A., Lane D. P., Hay R. T.. 1999; SUMO-1 modification activates the transcriptional response of p53. EMBO Journal18:6455–6461
    [Google Scholar]
  39. Sambrook J., Russell D.. 2001a; Agarose gel electrophoresis. In Molecular Cloning: a Laboratory Manual , 3rd edn. pp. 5.4–5.13 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Sambrook J., Russell D.. 2001b; Commonly used techniques in molecular cloning. In Molecular Cloning: a Laboratory Manual , 3rd edn. pp. A8.40–A8.51 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Schiewe U., Neipel F., Schreiner D., Fleckenstein B.. 1994; Structure and transcription of an immediate-early region in the human herpesvirus-6 genome. Journal of Virology68:2978–2985
    [Google Scholar]
  42. Szekely L., Pokrovskaja K., Jiang W. Q., de The H., Ringertz N., Klein G.. 1996; The Epstein–Barr virus-encoded nuclear antigen EBNA-5 accumulates in PML-containing bodies. Journal of Virology70:2562–2568
    [Google Scholar]
  43. Taylor-Wiedeman J., Sissons J. G. P., Borysiewicz L. K., Sinclair J. H.. 1991; Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. Journal of General Virology72:2059–2064
    [Google Scholar]
  44. Tomasec P., Braud V. M., Rickards C., Powell M. B., McSharry B. P., Gadola S., Cerundolo V., Borysiewicz L. K., McMichael A. J., Wilkinson G. W.. 2000; Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science287:1031
    [Google Scholar]
  45. Wilkinson G. W., Akrigg A.. 1992; Constitutive and enhanced expression from the CMV major IE promoter in a defective adenovirus vector. Nucleic Acids Research20:2233–2239
    [Google Scholar]
  46. Wilkinson G. W., Kelly C., Sinclair J. H., Rickards C.. 1998; Disruption of PML-associated nuclear bodies mediated by the human cytomegalovirus major immediate early gene product. Journal of General Virology79:1233–1245
    [Google Scholar]
  47. Xu Y., Ahn J. H., Cheng M., apRhys C. M., Chiou C. J., Zong J., Matunis M. J., Hayward G. S.. 2001; Proteasome-independent disruption of PML oncogenic domains (PODs), but not covalent modification by SUMO-1, is required for human cytomegalovirus immediate-early protein IE1 to inhibit PML-mediated transcriptional repression. Journal of Virology75:10683–10695
    [Google Scholar]
  48. Yamanishi K., Okuno T., Shiraki K., Takahashi M., Kondo T., Asano Y., Kurata T.. 1988; Identification of human herpesvirus-6 as a causal agent for exanthem subitum. Lancet i:1065–1067
    [Google Scholar]
  49. Zhong S., Salomoni P., Pandolfi P. P.. 2000; The transcriptional role of PML and the nuclear body. Nature Cell Biology2:85–90
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-11-2811
Loading
/content/journal/jgv/10.1099/0022-1317-83-11-2811
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error