1887

Abstract

Infection with human cytomegalovirus (HCMV) is known to involve complex interactions between viral and cellular factors resulting in perturbation of a number of cellular functions. Specifically, HCMV infection targets control of the cell cycle, cellular transcription and immunoregulation, presumably to optimize the cellular environment for virus persistence and productive infection. Here, we show that HCMV infection also prevents external signalling to the cell by disrupting the function of epidermal growth factor receptor (EGFR). Infection with HCMV resulted in a decrease in cell-surface expression of EGFR. This decrease was correlated with a concomitant decrease in steady-state levels of EGFR protein. Consistent with this, HCMV inhibited EGF-mediated receptor autophosphorylation. Infection with a mutant HCMV deleted of all viral gene products known to be involved in down-regulation of MHC Class I receptors still resulted in this down-regulation, implying that EGFR down-regulation by HCMV is mediated by a novel virus function. We suggest that a primary goal of HCMV is to ‘isolate’ the infected cell from host-mediated signals so that the cell responds solely to an array of virus-specific signals which optimize the cell for virus production.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-11-2803
2002-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/11/0832803a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-11-2803&mimeType=html&fmt=ahah

References

  1. Ahn K., Angulo A., Ghazal P., Peterson P. A., Yang Y., Fruh K. 1996; Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proceedings of the National Academy of Sciences, USA 93:10990–10995
    [Google Scholar]
  2. Alcami A., Koszinowski U. H. 2000; Viral mechanisms of immune evasion. Trends in Microbiology 8:410–418
    [Google Scholar]
  3. Baker N. E., Yu S. Y. 2001; The EGF receptor defines domains of cell cycle progression and survival to regulate cell number in the developing Drosophila eye. Cell 104:699–708
    [Google Scholar]
  4. Barnes P. D., Grundy J. E. 1992; Down-regulation of the class I HLA heterodimer and β2-microglobulin on the surface of cells infected with cytomegalovirus. Journal of General Virology 73:2395–2403
    [Google Scholar]
  5. Boldogh I., AbuBakar S., Albrecht T. 1990; Activation of proto-oncogenes: an immediate early event in human cytomegalovirus infection. Science 247:561–564
    [Google Scholar]
  6. Bresnahan W. A., Boldogh I., Thompson E. A., Albrecht T. 1996; Human cytomegalovirus inhibits cellular DNA synthesis and arrests productively infected cells in late G1. Virology 224:150–160
    [Google Scholar]
  7. Bromberg J. F., Fan Z., Brown C., Mendelsohn J., Darnell Darnell. J. Jr 1998; Epidermal growth factor-induced growth inhibition requires Stat1 activation. Cell Growth & Differentiation 9:505–512
    [Google Scholar]
  8. Carpenter G., Cohen S. 1976; Human epidermal growth factor and the proliferation of human fibroblasts. Journal of Cellular Physiology 88:227–237
    [Google Scholar]
  9. Chen J., Stinski M. 2002; Role of regulatory elements and the MAPK/ERK or p38 MAPK pathways for activation of human cytomegalovirus gene expression. Journal of Virology 76:4873–4885
    [Google Scholar]
  10. Crouch E., Wright J. R. 2001; Surfactant proteins a and d and pulmonary host defense. Annual Review of Physiology 63:521–554
    [Google Scholar]
  11. Daub H., Weiss F. U., Wallasch C., Ullrich A. 1996; Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379:557–560
    [Google Scholar]
  12. Dittmer D., Mocarski E. S. 1997; Human cytomegalovirus infection inhibits G1/S transition. Journal of Virology 71:1629–1634
    [Google Scholar]
  13. Fortunato E. A., McElroy A. K., Sanchez I., Spector D. H. 2000; Exploitation of cellular signaling and regulatory pathways by human cytomegalovirus. Trends in Microbiology 8:111–119
    [Google Scholar]
  14. Garcia-Lloret M. I., Yui J., Winkler-Lowen B., Guilbert L. J. 1996; Epidermal growth factor inhibits cytokine-induced apoptosis of primary human trophoblasts. Journal of Cellular Physiology 167:324–332
    [Google Scholar]
  15. Gardner D. P., Shimizu N. 1994; Loss of cytotoxic effect of epidermal growth factor (EGF) on EGF receptor overexpressing cells is associated with attenuation of EGF receptor tyrosine kinase activity. Journal of Cellular Physiology 158:245–255
    [Google Scholar]
  16. Glading A., Chang P., Lauffenburger D. A., Wells A. 2000; Epidermal growth factor receptor activation of calpain is required for fibroblast motility and occurs via an ERK/MAP kinase signaling pathway. Journal of Biological Chemistry 275:2390–2398
    [Google Scholar]
  17. Griffiths P. D., Grundy J. E. 1988; The status of CMV as a human pathogen. Epidemiology and Infection 100:1–15
    [Google Scholar]
  18. Hagemeier C., Caswell R., Hayhurst G., Sinclair J., Kouzarides T. 1994; Functional interaction between the HCMV IE2 transactivator and the retinoblastoma protein. EMBO Journal 13:2897–2903
    [Google Scholar]
  19. Higashiyama S., Abraham J. A., Miller J., Fiddes J. C., Klagsbrun M. 1991; A heparin-binding growth factor secreted by macrophage-like cells that is related to EGF. Science 251:936–939
    [Google Scholar]
  20. Holt K. H., Waters S. B., Okada S., Yamauchi K., Decker S. J., Saltiel A. R., Motto D. G., Koretzky G. A., Pessin J. E. 1996; Epidermal growth factor receptor targeting prevents uncoupling of the Grb2–SOS complex. Journal of Biological Chemistry 271:8300–8306
    [Google Scholar]
  21. Jault F. M., Jault J. M., Ruchti F., Fortunato E. A., Clark C., Corbeil J., Richman D. D., Spector D. H. 1995; Cytomegalovirus infection induces high levels of cyclins, phosphorylated Rb, and p53, leading to cell cycle arrest. Journal of Virology 69:6697–6704
    [Google Scholar]
  22. Johnson R. A., Huong S. M., Huang E. S. 2000; Activation of the mitogen-activated protein kinase p38 by human cytomegalovirus infection through two distinct pathways: a novel mechanism for activation of p38. Journal of Virology 74:1158–1167
    [Google Scholar]
  23. Jones T. R., Sun L. 1997; Human cytomegalovirus US2 destabilizes major histocompatibility complex class I heavy chains. Journal of Virology 71:2970–2979
    [Google Scholar]
  24. Jones T. R., Hanson L. K., Sun L., Slater J. S., Stenberg R. M., Campbell A. E. 1995; Multiple independent loci within the human cytomegalovirus unique short region down-regulate expression of major histocompatibility complex class I heavy chains. Journal of Virology 69:4830–4841
    [Google Scholar]
  25. Jones T. R., Wiertz E., Sun L., Fish K. N., Nelson J. A., Ploegh H. L. 1996a; Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proceedings of the National Academy of Sciences, USA 93:11327–11333
    [Google Scholar]
  26. Jones T. R., Wiertz E. J., Sun L., Fish K. N., Nelson J. A., Ploegh H. L. 1996b; Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proceedings of the National Academy of Sciences, USA 93:11327–11333
    [Google Scholar]
  27. Jun Y., Kim E., Jin M., Sung H. C., Han H., Geraghty D. E., Ahn K. 2000; Human cytomegalovirus gene products US3 and US6 down-regulate trophoblast class I MHC molecules. Journal of Immunology 164:805–811
    [Google Scholar]
  28. Klein J. M., Fritz B. L., McCarthy T. A., Wohlford-Lenane C. L., Snyder J. M. 1995; Localization of epidermal growth factor receptor in alveolar epithelium during human fetal lung development in vitro. Experimental Lung Research 21:917–939
    [Google Scholar]
  29. Klein J. M., McCarthy T. A., Dagle J. M., Snyder J. M. 2000; Antisense inhibition of epidermal growth factor receptor decreases expression of human surfactant protein A. American Journal of Respiratory Cell and Molecular Biology 22:676–684
    [Google Scholar]
  30. Lehner P. J., Karttunen J. T., Wilkinson G. W., Cresswell P. 1997; The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proceedings of the National Academy of Sciences, USA 94:6904–6909
    [Google Scholar]
  31. Lemmon M. A., Schlessinger J. 1994; Regulation of signal transduction and signal diversity by receptor oligomerization. Trends in Biochemical Sciences 19:459–463
    [Google Scholar]
  32. Lu M., Shenk T. 1996; Human cytomegalovirus infection inhibits cell cycle progression at multiple points, including the transition from G1 to S. Journal of Virology 70:8850–8857
    [Google Scholar]
  33. Murphy E. A., Streblow D. N., Nelson J. A., Stinski M. F. 2000; The human cytomegalovirus IE86 protein can block cell cycle progression after inducing transition into the S phase of permissive cells. Journal of Virology 74:7108–7118
    [Google Scholar]
  34. Phillips A. J., Tomasec P., Wang E. C., Wilkinson G. W., Borysiewicz L. K. 1998; Human cytomegalovirus infection downregulates expression of the cellular aminopeptidases CD10 and CD13. Virology 250:350–358
    [Google Scholar]
  35. Prigent S. A., Lemoine N. R. 1992; The type 1 (EGFR-related) family of growth factor receptors and their ligands. Progress in Growth Factor Research 4:1–24
    [Google Scholar]
  36. Prudenziati M., Sirito M., van Dam H., Ravazzolo R. 2000; Adenovirus E1A down-regulates the EGF receptor via repression of its promoter. International Journal of Cancer 88:943–948
    [Google Scholar]
  37. Reusch U., Muranyi W., Lucin P., Burgert H. G., Hengel H., Koszinowski U. H. 1999; A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO Journal 18:1081–1091
    [Google Scholar]
  38. Rodems S. M., Spector D. H. 1998; Extracellular signal-regulated kinase activity is sustained early during human cytomegalovirus infection. Journal of Virology 72:9173–9180
    [Google Scholar]
  39. Salvant B. S., Fortunato E. A., Spector D. H. 1998; Cell cycle dysregulation by human cytomegalovirus: influence of the cell cycle phase at the time of infection and effects on cyclin transcription. Journal of Virology 72:3729–3741
    [Google Scholar]
  40. Simmen K. A., Singh J., Luukkonen B. G., Lopper M., Bittner A., Miller N. E., Jackson M. R., Compton T., Fruh K. 2001; Global modulation of cellular transcription by human cytomegalovirus is initiated by viral glycoprotein B. Proceedings of the National Academy of Sciences, USA 98:7140–7145
    [Google Scholar]
  41. Sinclair J., Baillie J., Bryant L., Caswell R. 2000; Human cytomegalovirus mediates cell cycle progression through G1 into early S phase in terminally differentiated cells. Journal of General Virology 81:1553–1565
    [Google Scholar]
  42. Sinzger C., Kahl M., Laib K., Klingel K., Rieger P., Plachter B., Jahn G. 2000; Tropism of human cytomegalovirus for endothelial cells is determined by a post-entry step dependent on efficient translocation to the nucleus. Journal of General Virology 81:3021–3035
    [Google Scholar]
  43. Stenberg R. M. 1996; The human cytomegalovirus major immediate-early gene. Intervirology 39:343–349
    [Google Scholar]
  44. Stewart A. R., Tollefson A. E., Krajcsi P., Yei S. P., Wold W. S. 1995; The adenovirus E3 10·4K and 14·5K proteins, which function to prevent cytolysis by tumor necrosis factor and to down-regulate the epidermal growth factor receptor, are localized in the plasma membrane. Journal of Virology 69:172–181
    [Google Scholar]
  45. Tollefson A. E., Toth K., Doronin K., Kuppuswamy M., Doronina O. A., Lichtenstein D. L., Hermiston T. W., Smith C. A., Wold W. S. 2001; Inhibition of TRAIL-induced apoptosis and forced internalization of TRAIL receptor 1 by adenovirus proteins. Journal of Virology 75:8875–8887
    [Google Scholar]
  46. Warren A. P., Ducroq D. H., Lehner P. J., Borysiewicz L. K. 1994; Human cytomegalovirus-infected cells have unstable assembly of major histocompatibility complex class I complexes and are resistant to lysis by cytotoxic T lymphocytes. Journal of Virology 68:2822–2829
    [Google Scholar]
  47. Yurochko A. D., Huang E. S. 1999; Human cytomegalovirus binding to human monocytes induces immunoregulatory gene expression. Journal of Immunology 162:4806–4816
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-11-2803
Loading
/content/journal/jgv/10.1099/0022-1317-83-11-2803
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error