1887

Abstract

The R1 subunit of herpes simplex virus (HSV) ribonucleotide reductase, which in addition to its C-terminal reductase domain possesses a unique N-terminal domain of about 400 amino acids, is thought to have an additional, as yet unknown, function. Here, we report that the full-length HSV-2 R1 has an anti-apoptotic function able to protect cells against death triggered by expression of R1(Δ2–357), an HSV-2 R1 subunit with its first 357 amino acids deleted. We further substantiate the R1 anti-apoptotic activity by showing that its accumulation at low level could completely block apoptosis induced by TNF-receptor family triggering. Activation of caspase-8 induced either by TNF or by Fas ligand expression was prevented by the R1 protein. As HSV R1 did not inhibit cell death mediated by several agents acting via the mitochondrial pathway (Bax overexpression, etoposide, staurosporine and menadione), it is proposed that it functions to interrupt specifically death receptor-mediated signalling at, or upstream of, caspase-8 activation. The N-terminal domain on its own did not exhibit anti-apoptotic activity, suggesting that both domains of R1 or part(s) of them are necessary for this new function. Evidence for the importance of HSV R1 in protecting HSV-infected cells against cytokine-induced apoptosis was obtained with the HSV-1 R1 deletion mutants ICP6Δ and R3. These results show that, in addition to its ribonucleotide reductase function, which is essential for virus reactivation, HSV R1 could contribute to virus propagation by preventing apoptosis induced by the immune system.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-11-2779
2002-11-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/11/0832779a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-11-2779&mimeType=html&fmt=ahah

References

  1. Ahmed M., Lock M., Miller C. G., Fraser N. W. 2002; Regions of the herpes simplex virus type 1 latency-associated transcript that protect cells from apoptosis in vitro and protect neuronal cells in vivo . Journal of Virology 76:717–729
    [Google Scholar]
  2. Asano S., Honda T., Goshima F., Watanabe D., Miyake Y., Sugiura Y., Nishiyama Y. 1999; US3 protein kinase of herpes simplex virus type 2 plays a role in protecting corneal epithelial cells from apoptosis in infected mice. Journal of General Virology 80:51–56
    [Google Scholar]
  3. Ashkenazi A., Dixit V. M. 1998; Death receptors: signalling and modulation. Science 281:1305–1308
    [Google Scholar]
  4. Aubert M., Blaho J. A. 1999; The herpes simplex virus type 1 regulatory protein ICP27 is required for the prevention of apoptosis in infected human cells. Journal of Virology 73:2803–2813
    [Google Scholar]
  5. Aubert M., O′Toole J., Blaho J. A. 1999; Induction and prevention of apoptosis in human HEp-2 cells by herpes simplex virus type 1. Journal of Virology 73:10359–10370
    [Google Scholar]
  6. Brandt C. R., Kintner R. L., Pumfery A. M., Visalli R. J., Grau D. R. 1991; The herpes simplex virus ribonucleotide reductase is required for ocular virulence. Journal of General Virology 72:2043–2049
    [Google Scholar]
  7. Brune W., Menard C., Heesemann J., Koszinowski U. H. 2001; A ribonucleotide reductase homologue of cytomegalovirus and endothelial cell tropism. Science 291:303–305
    [Google Scholar]
  8. Chung T. D., Wymer J. P., Smith C. C., Kulka M., Aurelian L. 1989; Protein kinase activity associated with the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10). Journal of Virology 63:3389–3398
    [Google Scholar]
  9. Cohen E. A., Gaudreau P., Brazeau P., Langelier Y. 1986; Neutralization of herpes simplex virus ribonucleotide reductase activity by an oligopeptide-induced antiserum directed against subunit H2. Journal of Virology 60:1130–1133
    [Google Scholar]
  10. Conner J. 1999; The unique N terminus of herpes simplex virus type 1 ribonucleotide reductase large subunit is phosphorylated by casein kinase 2, which may have a homologue in Escherichia coli . Journal of General Virology 80:1471–1476
    [Google Scholar]
  11. Conner J., Marsden H., Clements B. H. 1994; Ribonucleotide reductase of herpesviruses. Reviews in Medical Virology 4:25–34
    [Google Scholar]
  12. Cooper J., Conner J., Clements J. B. 1995; Characterization of the novel protein kinase activity present in the R1 subunit of herpes simplex virus ribonucleotide reductase. Journal of Virology 69:4979–4985
    [Google Scholar]
  13. Engels I. H., Stepczynska A., Stroh C., Lauber K., Berg C., Schwenzer R., Wajant H., Janicke R. U., Porter A. G., Belka C., Gregor M., Schulze-Osthoff K., Wesselborg S. 2000; Caspase-8/FLICE functions as an executioner caspase in anticancer drug-induced apoptosis. Oncogene 19:4563–4573
    [Google Scholar]
  14. Fulda S., Meyer E., Debatin K. M. 2000; Metabolic inhibitors sensitize for CD95 (APO-1/Fas)-induced apoptosis by down-regulating Fas-associated death domain-like interleukin 1-converting enzyme inhibitory protein expression. Cancer Research 60:3947–3956
    [Google Scholar]
  15. Goldstein D. J., Weller S. K. 1988a; Factor(s) present in herpes simplex virus type 1-infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase: characterization of an ICP6Δdeletion mutant. Virology 166:41–51
    [Google Scholar]
  16. Goldstein D. J., Weller S. K. 1988b; Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: isolation and characterization of an ICP6ΔlacZ insertion mutant. Journal of Virology 62:196–205
    [Google Scholar]
  17. Gross A., McDonnell J. M., Korsmeyer S. J. 1999; BCL-2 family members and the mitochondria in apoptosis. Genes & Development 13:1899–1911
    [Google Scholar]
  18. Ingemarson R., Lankinen H. 1987; The herpes simplex virus type 1 ribonucleotide reductase is a tight complex of the type alpha 2 beta 2 composed of 40K and 140K proteins, of which the latter shows multiple forms due to proteolysis. Virology 156:417–422
    [Google Scholar]
  19. Jacobson J. G., Leib D. A., Goldstein D. J., Bogard C. L., Schaffer P. A., Weller S. K., Coen D. M. 1989; A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology 173:276–283
    [Google Scholar]
  20. Jerome K. R., Tait J. F., Koelle D. M., Corey L. 1998; Herpes simplex virus type 1 renders infected cells resistant to cytotoxic T-lymphocyte-induced apoptosis. Journal of Virology 72:436–441
    [Google Scholar]
  21. Jerome K. R., Fox R., Chen Z., Sears A. E., Lee H., Corey L. 1999; Herpes simplex virus inhibits apoptosis through the action of two genes, Us5 and Us3. Journal of Virology 73:8950–8957
    [Google Scholar]
  22. Jerome K. R., Chen Z., Lang R., Torres M. R., Hofmeister J., Smith S., Fox R., Froelich C. J., Corey L. 2001; HSV and glycoprotein J inhibit caspase activation and apoptosis induced by granzyme B or Fas. Journal of Immunology 167:3928–3935
    [Google Scholar]
  23. Jones C. M., Cose S. C., Coles R. M., Winterhalter A. C., Brooks A. G., Heath W. R., Carbone F. R. 2000; Herpes simplex virus type 1-specific cytotoxic T-lymphocyte arming occurs within lymph nodes draining the site of cutaneous infection. Journal of Virology 74:2414–2419
    [Google Scholar]
  24. Jones F. E., Smibert C. A., Smiley J. R. 1995; Mutational analysis of the herpes simplex virus virion host shutoff protein: evidence that vhs functions in the absence of other viral proteins. Journal of Virology 69:4863–4871
    [Google Scholar]
  25. Kodukula P., Liu T., Rooijen N. V., Jager M. J., Hendricks R. L. 1999; Macrophage control of herpes simplex virus type 1 replication in the peripheral nervous system. Journal of Immunology 162:2895–2905
    [Google Scholar]
  26. Korsmeyer S. J., Wei M. C., Saito M., Weiler S., Oh K. J., Schlesinger P. H. 2000; Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death and Differentiation 7:1166–1173
    [Google Scholar]
  27. Koyama A. H., Miwa Y. 1997; Suppression of apoptotic DNA fragmentation in herpes simplex virus type 1-infected cells. Journal of Virology 71:2567–2571
    [Google Scholar]
  28. Kreuz S., Siegmund D., Scheurich P., Wajant H. 2001; NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signalling. Molecular and Cellular Biology 21:3964–3973
    [Google Scholar]
  29. Krueger A., Baumann S., Krammer P. H., Kirchhoff S. 2001; FLICE-inhibitory proteins: regulators of death receptor-mediated apoptosis. Molecular and Cellular Biology 21:8247–8254
    [Google Scholar]
  30. Lamarche N., Matton G., Massie B., Fontecave M., Atta M., Dumas F., Gaudreau P., Langelier Y. 1996; Production of the R2 subunit of ribonucleotide reductase from herpes simplex virus with prokaryotic and eukaryotic expression systems: higher activity of R2 produced by eukaryotic cells related to higher iron-binding capacity. Biochemical Journal 320:129–135
    [Google Scholar]
  31. Langelier Y., Buttin G. 1981; Characterization of ribonucleotide reductase induction in BHK-21/C13 Syrian hamster cell line upon infection by herpes simplex virus (HSV). Journal of General Virology 57:21–31
    [Google Scholar]
  32. Langelier Y., Champoux L., Hamel M., Guilbault C., Lamarche N., Gaudreau P., Massie B. 1998; The R1 subunit of herpes simplex virus ribonucleotide reductase is a good substrate for host cell protein kinases but is not itself a protein kinase. Journal of Biological Chemistry 273:1435–1443
    [Google Scholar]
  33. Leopardi R., Roizman B. 1996; The herpes simplex virus major regulatory protein ICP4 blocks apoptosis induced by the virus or by hyperthermia. Proceedings of the National Academy of Sciences, USA 93:9583–9587
    [Google Scholar]
  34. Leopardi R., Van Sant C., Roizman B. 1997; The herpes simplex virus 1 protein kinase US3 is required for protection from apoptosis induced by the virus. Proceedings of the National Academy of Sciences, USA 94:7891–7896
    [Google Scholar]
  35. Li K., Li Y., Shelton J. M., Richardson J. A., Spencer E., Chen Z. J., Wang X., Williams R. S. 2000; Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101:389–399
    [Google Scholar]
  36. Liu T., Khanna K. M., Chen X., Fink D. J., Hendricks R. L. 2000; CD8+ T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons [see comments]. Journal of Experimental Medicine 191:1459–1466
    [Google Scholar]
  37. Massie B., Couture F., Lamoureux L., Mosser D. D., Guilbault C., Jolicoeur P., Belanger F., Langelier Y. 1998a; Inducible overexpression of a toxic protein by an adenovirus vector with a tetracycline-regulatable expression cassette. Journal of Virology 72:2289–2296
    [Google Scholar]
  38. Massie B., Mosser D. D., Koutroumanis M., Vitté-Mony I., Lamoureux L., Couture F., Paquet L., Guilbault C., Dionne J., Chahla D., Jolicoeur P., Langelier Y. 1998b; New adenovirus vectors for protein production and gene transfer. Cytotechnology 28:53–54
    [Google Scholar]
  39. Mittereder N., March K. L., Trapnell B. C. 1996; Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. Journal of Virology 70:7498–7509
    [Google Scholar]
  40. Munger J., Roizman B. 2001; The US3 protein kinase of herpes simplex virus 1 mediates the posttranslational modification of BAD and prevents BAD-induced programmed cell death in the absence of other viral proteins. Proceedings of the National Academy of Sciences, USA 98:10410–10415
    [Google Scholar]
  41. Nash A. A. 2000; T cells and the regulation of herpes simplex virus latency and reactivation. Journal of Experimental Medicine 191:1455–1458
    [Google Scholar]
  42. Nichol P. F., Chang J. Y., Johnson E. M., Olivo P. D. 1996; Herpes simplex virus gene expression in neurons – viral DNA synthesis is a critical regulatory event in the branch point between the lytic and latent pathways. Journal of Virology 70:5476–5486
    [Google Scholar]
  43. Nikas I., McLauchlan J., Davison A. J., Taylor W. R., Clements J. B. 1986; Structural features of ribonucleotide reductase. Proteins 1:376–384
    [Google Scholar]
  44. Paradis H., Gaudreau P., Massie B., Lamarche N., Guilbault C., Gravel S., Langelier Y. 1991; Affinity purification of active subunit 1 of herpes simplex virus type 1 ribonucleotide reductase exhibiting a protein kinase activity. Journal of Biological Chemistry 266:9647–9651
    [Google Scholar]
  45. Perkins D., Pereira E. F., Gober M., Yarowsky P. J., Aurelian L. 2002; The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) blocks apoptosis in hippocampal neurons, involving activation of the MEK/MAPK survival pathway. Journal of Virology 76:1435–1449
    [Google Scholar]
  46. Perng G. C., Jones C., Ciacci-Zanella J., Stone M., Henderson G., Yukht A., Slanina S. M., Hofman F. M., Ghiasi H., Nesburn A. B., Wechsler S. L. 2000; Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287:1500–1503
    [Google Scholar]
  47. Poon R. Y., Toyoshima H., Hunter T. 1996; On the masking of signals on immunoblots by cellular proteins. Journal of Immunological Methods 199:155–158
    [Google Scholar]
  48. Posavad C. M., Huang M. L., Barcy S., Koelle D. M., Corey L. 2000; Long term persistence of herpes simplex virus-specific CD8+ CTL in persons with frequently recurring genital herpes. Journal of Immunology 165:1146–1152
    [Google Scholar]
  49. Samali A., Nordgren H., Zhivotovsky B., Peterson E., Orrenius S. 1999; A comparative study of apoptosis and necrosis in HepG2 cells: oxidant-induced caspase inactivation leads to necrosis. Biochemical and Biophysical Research Communications 255:6–11
    [Google Scholar]
  50. Scaffidi C., Medema J. P., Krammer P. H., Peter M. E. 1997; FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. Journal of Biological Chemistry 272:26953–26958
    [Google Scholar]
  51. Shimeld C., Whiteland J. L., Williams N. A., Easty D. L., Hill T. J. 1997; Cytokine production in the nervous system of mice during acute and latent infection with herpes simplex virus type 1. Journal of General Virology 78:3317–3325
    [Google Scholar]
  52. Shimeld C., Easty D. L., Hill T. J. 1999; Reactivation of herpes simplex virus type 1 in the mouse trigeminal ganglion: an in vivo study of virus antigen and cytokines. Journal of Virology 73:1767–1773
    [Google Scholar]
  53. Skaletskaya A., Bartle L. M., Chittenden T., McCormick A. L., Mocarski E. S., Goldmacher V. S. 2001; A cytomegalovirus-encoded inhibitor of apoptosis that suppresses caspase-8 activation. Proceedings of the National Academy of Sciences, USA 98:7829–7834
    [Google Scholar]
  54. Sun Y., Conner J. 1999; The U28 ORF of human herpesvirus-7 does not encode a functional ribonucleotide reductase R1 subunit. Journal of General Virology 80:2713–2718
    [Google Scholar]
  55. Talsinger R., Lasner T. M., Podrzucki W., Skokotas A., Leary J. J., Berger S. L., Fraser N. W. 1997; Gene expression during reactivation of herpes simplex virus type 1 from latency in the peripheral nervous system is different from that during lytic infection of tissue cultures. Journal of Virology 71:5268–5276
    [Google Scholar]
  56. Tang D., Lahti J. M., Kidd V. J. 2000; Caspase-8 activation and bid cleavage contribute to MCF7 cellular execution in a caspase-3-dependent manner during staurosporine-mediated apoptosis. Journal of Biological Chemistry 275:9303–9307
    [Google Scholar]
  57. Wajant H., Haas E., Schwenzer R., Muhlenbeck F., Kreuz S., Schubert G., Grell M., Smith C., Scheurich P. 2000; Inhibition of death receptor-mediated gene induction by a cycloheximide-sensitive factor occurs at the level of or upstream of Fas-associated death domain protein (FADD). Journal of Biological Chemistry 275:24357–24366
    [Google Scholar]
  58. Zachos G., Koffa M., Preston C. M., Clements J. B., Conner J. 2001; Herpes simplex virus type 1 blocks the apoptotic host cell defence mechanisms that target Bcl-2 and manipulates activation of p38 mitogen-activated protein kinase to improve viral replication. Journal of Virology 75:2710–2728
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-11-2779
Loading
/content/journal/jgv/10.1099/0022-1317-83-11-2779
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error