Rapid replacement of endemic measles virus genotypes Free

Abstract

Although vaccination campaigns have significantly reduced the number of measles cases worldwide, endemic transmission of measles virus (MV) continues to occur in several continents, including Europe. To obtain current information on measles incidence and molecular data on circulating MVs in Germany, a nationwide measles sentinel was established. Phylogenetic analysis based on the variable part of the N gene from 80 MVs isolated between November 1999 and October 2001 revealed the presence of at least six distinct MV genotypes: B3, C2, D4, D6, G2 and a new variant of D7. Both the incidence and the pattern of MV genotypes differed markedly between the former East and West Germany. In the eastern part, few measles cases, mainly caused by genotypes originating from other countries (B3, D4, G2), were detected. In the western and southern parts, genotypes C2, D6 and D7 were associated with endemic transmission. Surprisingly, the indigenous genotypes predominant during the 1990s – C2 and D6 – disappeared simultaneously over the period of observation coinciding with the emergence and the wide spread of D7 viruses. While the incidence of measles remained constant, all MVs isolated in 2001 were assigned to D7. We note that the haemagglutinin (H) sequence of D7 viruses shows distinct exchanges of certain amino acids in the stem and propeller domain compared to C2, D6 and the MV vaccine strains used. This raises the possibility of a selective advantage of D7 viruses transmitted in the presence of H-specific antibodies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-11-2699
2002-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/11/0832699a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-11-2699&mimeType=html&fmt=ahah

References

  1. Bellini W. J., Rota P. A. 1998; Genetic diversity of wild-type measles viruses: implications for global measles elimination programs. Emerging Infectious Diseases 4:29–35
    [Google Scholar]
  2. Bellini W. J., Rota J. S., Rota P. A. 1994; Virology of measles virus. Journal of Infectious Diseases 170:15–23
    [Google Scholar]
  3. Cattaneo R., Rose J. K. 1993; Cell fusion by the envelope glycoproteins of persistent measles viruses which caused lethal human brain disease. Virology 67:1493–1502
    [Google Scholar]
  4. Chibo D., Birch C. J., Rota P. A., Catton M. G. 2000; Molecular characterization of measles viruses isolated in Victoria, Australia, between 1973 and 1998. Journal of General Virology 81:2511–2518
    [Google Scholar]
  5. de Swart R. L., Wertheim-van Dillen P. M. E., van Binnendijk R. S., Muller C. P., Frenkel J., Osterhaus A. D. M. E. 2000; Measles in a Dutch hospital introduced by an immunocompromised infant from Indonesia infected with a new virus genotype. Lancet 355:201–202
    [Google Scholar]
  6. Felsenstein J. 1995 PHYLIP (Phylogeny Inference Package) version 3.57c Department of Genetics, University of Washington; Seattle, WA, USA:
    [Google Scholar]
  7. Giraudon P., Wild T. F. 1985; Correlation between epitopes on hemagglutinin of measles virus and biological activities: passive protection by monoclonal antibodies is related to their hemagglutination inhibiting activity. Virology 144:46–58
    [Google Scholar]
  8. Hanses F., Truong A. T., Ammerlaan W., Ikusika O., Adu F., Oyefolu A. O., Omilabu S. A., Muller C. P. 1999; Molecular epidemiology of Nigerian and Ghanaian measles virus isolates reveals a genotype circulating widely in western and central Africa. Journal of General Virology 80:871–877
    [Google Scholar]
  9. Hanses F., van Binnendijk R., Ammerlaan W., Truong A. T., de Rond L., Schneider F., Muller C. P. 2000; Genetic variability of measles virus circulating in the Benelux. Archives of Virology 145:541–551
    [Google Scholar]
  10. Hay A. J., Gregory V., Douglas A. R., Lin Y. P. 2001; The evolution of human influenza viruses. Philosophical Transactions of the Royal Society of London 356:1861–1870
    [Google Scholar]
  11. Hellenbrand W., Siedler A., Tischer A., Meyer C., Reiter S., Rasch G., Teichmann D., Santibanez S., Altmann D., Hermann C., Kramer M. 2002; Progress towards measles elimination in Germany. Journal of Infectious Diseases Supplement (in revision
    [Google Scholar]
  12. Jin L., Brown D. W. G., Ramsay M. E. B., Rota P. A., Bellini W. J. 1997; The diversity of measles in the United Kingdom, 1992–1995. Journal of General Virology 78:1287–1294
    [Google Scholar]
  13. Klingele M., Hartter H. K., Adu F., Ammerlaan W., Ikusika W., Muller C. P. 2000; Resistance of recent measles virus wild-type isolates to antibody-mediated neutralization by vaccinees with antibody. Journal of Medical Virology 62:91–98
    [Google Scholar]
  14. Kreis S., Vardas E., Whistler T. 1997; Sequence analysis of the nucleocapsid gene of measles virus isolates from South Africa identifies a new genotype. Journal of General Virology 78:1581–1587
    [Google Scholar]
  15. Langedijk J. P. M., Daus F. J., van Oirschot J. T. 1997; Sequence and structure alignment of paramyxoviridae attachment proteins and discovery of enzymatic activity for a morbillivirus hemagglutinin. Journal of Virology 71:6155–6167
    [Google Scholar]
  16. Lee M. S., Nokes D. J., Hsu H. M., Lu C. F. 2000; Protective titres of measles neutralising antibody. Journal of Medical Virology 62:511–517
    [Google Scholar]
  17. Liffick S. L., Thoung N. T., Xu W., Li Y., Lien H. P., Bellini W. J., Rota P. A. 2001; Genetic characterization of contemporary wild-type measles viruses from Vietnam and the People′s Republic of China: identification of two genotypes within clade H. Virus Research 77:81–87
    [Google Scholar]
  18. Makela M. J., Lund G. A., Salmi A. A. 1989a; Antigenicity of the measles virus haemagglutinin studied by using synthetic peptides. Journal of General Virology 70:603–614
    [Google Scholar]
  19. Makela M. J., Salmi A. A., Norrby E., Wild T. F. 1989b; Monoclonal antibodies against measles virus haemagglutinin react with synthetic peptides. Scandinavian Journal of Immunology 30:225–231
    [Google Scholar]
  20. Mori T., Sasaki H., Hashimoto H., Makino S. 1993; Molecular cloning and complete nucleotide sequence of genomic RNA of the AIK-C strain of attenuated measles virus. Virus Genes 7:67–81
    [Google Scholar]
  21. Nigatu W., Jin L., Cohen B. J., Nokes D. J., Etana M., Cutts F. T., Brown D. W. G. 2001; Measles virus strains circulating in Ethiopia in 1998–1999: molecular characterization using oral fluid samples and identification of a new genotype. Journal of Medical Virology 65:373–380
    [Google Scholar]
  22. PAHO 2001; Expanded programme on immunization in the Americas – measles importations in El Salvador. EPI Newsletter 23:1–3
    [Google Scholar]
  23. Pedersen I. R., Mordhorst C. H., Glikmann G., von Magnus H. 1989; Subclinical measles infection in vaccinated seropositive individuals in arctic Greenland. Vaccine 7:345–348
    [Google Scholar]
  24. Rima B. K., Earle J. A. P., Yeo R. P., Herlihy L., Baczko K., ter Meulen V., Carabana J., Caballero M., Celma M. L., Fernandez-Munoz R. 1995; Temporal and geographical distribution of measles virus genotypes. Journal of General Virology 76:1173–1180
    [Google Scholar]
  25. Rima B. K., Earle J. A. P., Baczko K., ter Meulen V., Liebert U. G., Carstens C., Carabana J., Caballero M., Celma M. L., Fernandez-Munoz R. 1997; Sequence divergence of measles virus haemagglutinin during natural evolution and adaption to cell culture. Journal of General Virology 78:97–106
    [Google Scholar]
  26. Rota J. S., Hummel K. B., Rota P. A., Bellini W. J. 1992; Genetic variability of the glycoprotein genes of current wild-type measles isolates. Virology 188:135–142
    [Google Scholar]
  27. Rota J. S., Heath J. L., Rota P. A., King G. E., Celma M. L., Carabana J., Fernandez-Munoz R., Brown D., Jin L., Bellini W. J. 1996; Molecular epidemiology of measles virus: identification of pathways of transmission and implications for measles elimination. Journal of Infectious Diseases 173:32–37
    [Google Scholar]
  28. Rota P. A., Liffick S., Rosenthal S., Heriyanto B., Chua K. B. 2000; Measles genotype G2 in Indonesia and Malaysia. Lancet 355:1557–1558
    [Google Scholar]
  29. Saito H., Nakagomi O., Morita M. 1995; Molecular identification of two distinct hemagglutinin types of measles virus by polymerase chain reaction and restriction fragment length polymorphism (PCR–RFLP). Molecular and Cellular Probes 9:1–8
    [Google Scholar]
  30. Santibanez S., Heider A., Gerike E., Agafonov A., Schreier E. 1999; Genotyping of measles virus isolates from Central Europe and Russia. Journal of Medical Virology 58:313–320
    [Google Scholar]
  31. Schneider-Schaulies J., ter Meulen V., Schneider-Schaulies S. 2001; Measles virus interactions with cellular receptors: consequences for viral pathogenesis. Journal of Neurovirology 7:391–399
    [Google Scholar]
  32. Tatsuo H., Ono N., Tanaka K., Yanagi Y. 2000; SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897
    [Google Scholar]
  33. Truong A. T., Kreis S., Ammerlaan W., Hartter H., Adu F., Omilabu S. A., Oyefolu A. O., Berbers G. A. M., Muller C. P. 1999; Genotypic and antigenic characterization of hemagglutinin proteins of African measles virus isolates. Virus Research 62:89–95
    [Google Scholar]
  34. Truong A. T., Mulders M. N., Gautam D. C., Ammerlaan W., de Swart R. L., King C., Osterhaus A. D. M. E., Muller C. P. 2001; Genetic analysis of Asian measles virus strains – new endemic genotype in Nepal. Virus Research 76:71–78
    [Google Scholar]
  35. Vardas E., Kreis S. 1999; Isolation of measles virus from a naturally-immune, asymptomatically re-infected individual. Journal of Clinical Virology 13:173–179
    [Google Scholar]
  36. WHO 2001; Expanded programme on immunization – nomenclature for describing the genetic characteristics of wild-type measles viruses (update), part I. Weekly Epidemiological Record 32:252–247
    [Google Scholar]
  37. WHO/UNICEF 2001; UN Agencies launch new plan to halve mortality of measles, a major childhood killer. Joint WHO/UNICEF Press Release WHO/16 29 March 2001
    [Google Scholar]
  38. Wild T. F., Buckland R. 1995; Functional aspects of envelope-associated measles virus proteins. Current Topics in Microbiology and Immunology 191:51–64
    [Google Scholar]
  39. Wild T. F., Malvison E., Buckland R. 1991; Measles virus: both the haemagglutinin and fusion glycoproteins are required for fusion. Journal of General Virology 72:439–442
    [Google Scholar]
  40. Xu W., Tamin A., Rota J. S., Zhang L., Bellini W. J., Rota P. A. 1998; New genetic group of measles virus isolated in the People′s Republic of China. Virus Research 54:147–156
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-11-2699
Loading
/content/journal/jgv/10.1099/0022-1317-83-11-2699
Loading

Data & Media loading...

Most cited Most Cited RSS feed