1887

Abstract

Both influenza A virus surface glycoproteins, the haemagglutinin (HA) and neuraminidase (NA), interact with neuraminic acid-containing receptors. The influenza virus A/Charlottesville/31/95 (H1N1) has shown a substantially reduced sensitivity to NA inhibitor compared with the A/WSN/33 (H1N1) isolate by plaque-reduction assays in Madin–Darby canine kidney (MDCK) cells. However, there was no difference in drug sensitivity in an NA inhibition assay. The replacement of the HA gene of A/WSN/33 with the HA gene of A/Charlottesville/31/95 led to a drastic reduction in sensitivity of A/WSN/33 to NA inhibitor in MDCK cells. Passage of A/Charlottesville/31/95 in cell culture in the presence of an NA inhibitor resulted in the emergence of mutant viruses (delNA) whose genomes lacked the coding capacity for the NA active site. The delNA mutants were plaque-to-plaque purified and further characterized. The delNA-31 mutant produced appreciable yields (∼10 p.f.u./ml) in MDCK cell culture supernatants in the absence of viral or bacterial NA activity. Sequence analysis of the delNA mutant genome revealed no compensatory substitutions in the HA or other genes compared with the wild-type. Our data indicate that sialylation of the oligosaccharide chains in the vicinity of the HA receptor-binding site of A/Charlottesville/31/95 virus reduces the HA binding efficiency and thus serves as a compensatory mechanism for the loss of NA activity. Hyperglycosylation of HA is common in influenza A viruses circulating in humans and has the potential to reduce virus sensitivity to NA inhibitors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-11-2683
2002-11-01
2020-06-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/11/0832683a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-11-2683&mimeType=html&fmt=ahah

References

  1. Baigent S. J., McCauley J. W.. 2001; Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture. Virus Research79:177–185
    [Google Scholar]
  2. Baigent S. J., Bethell R. C., McCauley J. W.. 1999; Genetic analysis reveals that both haemagglutinin and neuraminidase determine the sensitivity of naturally occurring avian influenza viruses to zanamivir in vitro. Virology263:323–338
    [Google Scholar]
  3. Baum L. G., Paulson J. C.. 1990; Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity. Acta Histochemica Supplementband40:35–38
    [Google Scholar]
  4. Blick T. J., Sahasrabudhe A., Mcdonald M., Owens I. J., Morley P. J., Fenton R. J., McKimm-Breschkin J. L.. 1998; The interaction of neuraminidase and hemagglutinin mutations in influenza virus in resistance to 4-guanidino-Neu5Ac2en. Virology246:95–103
    [Google Scholar]
  5. Colman P. M.. 1994; Influenza virus neuraminidase: structure, antibodies and inhibitors. Protein Science3:1687–1696
    [Google Scholar]
  6. Govorkova E. A., Kaverin N. V., Gubareva L. V., Meignier B., Webster R. G.. 1995; Replication of influenza A viruses in a green monkey kidney continuous cell line (Vero). Journal of Infectious Diseases172:250–253
    [Google Scholar]
  7. Gubareva L. V., Matrosovich M. N., Brenner M. K., Bethell R. C., Webster R. G.. 1998; Evidence for zanamivir resistance in an immunocompromised child infected with influenza B virus. Journal of Infectious Diseases178:1257–1262
    [Google Scholar]
  8. Gubareva L. V., Kaiser L., Hayden F. G.. 2000; Influenza virus neuraminidase inhibitors. Lancet355:827–835
    [Google Scholar]
  9. Gubareva L. V., Kaiser L., Matrosovich M. N., Soo-Hoo Y., Hayden F. G.. 2001a; Selection of influenza virus mutants in experimentally infected volunteers treated with oseltamivir. Journal of Infectious Diseases183:523–531
    [Google Scholar]
  10. Gubareva L. V., Webster R. G., Hayden F. G.. 2001b; Comparison of the activities of zanamivir, oseltamivir and RWJ-270201 against clinical isolates of influenza virus and neuraminidase inhibitor-resistant variants. Antimicrobial Agents and Chemotherapy45:3403–3408
    [Google Scholar]
  11. Hayden F. G., Treanor J. J., Betts R. F., Lobo M., Esinhart J. D., Hussey E. K.. 1996; Safety and efficacy of the neuraminidase inhibitor GG167 in experimental human influenza. Journal of the American Medical Association275:295–299
    [Google Scholar]
  12. Hayden F. G., Treanor J. J., Fritz R. S., Lobo M., Betts R. F., Miller M., Kinnersley N., Mills R. G., Ward P., Straus S. E.. 1999; Use of the oral neuraminidase inhibitor oseltamivir in experimental human influenza: randomized controlled trials for prevention and treatment. Journal of the American Medical Association282:1240–1246
    [Google Scholar]
  13. Hoffmann E., Neumann G., Kawaoka Y., Hobom G., Webster R. G.. 2000; A DNA transfection system for generation of influenza A virus from eight plasmids. Proceedings of the National Academy of Sciences, USA97:6108–6113
    [Google Scholar]
  14. Hughes M. T., Matrosovich M. N., Rodgers M. E., McGregor M., Kawaoka Y.. 2000; Influenza A viruses lacking sialidase activity can undergo multiple cycles of replication in cell culture, eggs, or mice. Journal of Virology74:5206–5212
    [Google Scholar]
  15. Hughes M. T., McGregor M., Suzuki T., Suzuki Y., Kawaoka Y.. 2001; Adaptation of influenza A viruses to cells expressing low levels of sialic acid leads to loss of neuraminidase activity. Journal of Virology75:3766–3770
    [Google Scholar]
  16. Inkster M. D., Hinshaw V. S., Schulze I. T.. 1993; The hemagglutinins of duck and human H1 influenza viruses differ in sequence conservation and in glycosylation. Journal of Virology67:7436–7443
    [Google Scholar]
  17. Kaverin N. V., Gambaryan A. S., Bovin N. V., Rudneva I. A., Shilov A. A., Khodova O. M., Varich N. L., Sinitsin B. V., Makarova N. V., Kropotkina E. A.. 1998; Postreassortment changes in influenza A virus hemagglutinin restoring HA–NA functional match. Virology244:315–321
    [Google Scholar]
  18. Liu C., Air G. M.. 1993; Selection and characterization of a neuraminidase-minus mutant of influenza virus and its rescue by cloned neuraminidase genes. Virology194:403–407
    [Google Scholar]
  19. Liu C., Eichelberger M. C., Compans R. W., Air G. M.. 1995; Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding. Journal of Virology69:1099–1106
    [Google Scholar]
  20. McKimm-Breschkin J. L.. 2000; Resistance of influenza viruses to neuraminidase inhibitors – a review. Antiviral Research47:1–17
    [Google Scholar]
  21. Matrosovich M., Zhou N., Kawaoka Y., Webster R.. 1999; The surface glycoproteins of H5 influenza viruses isolated from humans, chickens and wild aquatic birds have distinguishable properties. Journal of Virology73:1146–1155
    [Google Scholar]
  22. Mitnaul L., Matrosovich M. N., Castrucci M. R., Tuzikov A. B., Bovin N. V., Kobasa D., Kawaoka Y.. 2000; Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. Journal of Virology74:6015–6020
    [Google Scholar]
  23. Nedyalkova M. S., Hayden F. G., Webster R. G., Gubareva L. V.. 2002; Accumulation of defective neuraminidase (NA) genes by influenza A viruses in the presence of NA inhibitors as a marker of reduced dependence on NA. Journal of Infectious Diseases185:591–598
    [Google Scholar]
  24. Ohuchi M., Ohuchi R., Fieldmann A., Klenk H. D.. 1997; Regulation of receptor binding affinity of influenza virus hemagglutinin by its carbohydrate moiety. Journal of Virology71:8377–8384
    [Google Scholar]
  25. Palese P., Compans R. W.. 1976; Inhibition of influenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifluoro-acetyl-neuraminic acid (FANA): mechanism of action. Journal of General Virology33:159–163
    [Google Scholar]
  26. Potier M., Mameli L., Belisle M., Dallaire L., Melancon S. B.. 1979; Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-alpha-d-N-acetylneuraminate) substrate. Analytical Biochemistry94:287–296
    [Google Scholar]
  27. Treanor J. J., Hayden F. G., Vrooman P. S., Barbarash R., Bettis P., Riff D., Singh S., Kinnersley N., Ward P., Mills R. G.. 2000; Efficacy and safety of the oral neuraminidase inhibitor oseltamivir in treating acute influenza: a randomized controlled trial. Journal of the American Medical Association283:1016–1024
    [Google Scholar]
  28. Wagner R., Wolff T., Herwig A., Pleschka S., Klenk H.-D.. 2000; Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. Journal of Virology74:6316–6323
    [Google Scholar]
  29. Whitley R. J., Hayden F. G., Reisinger K. S., Young N., Dutkowski R., Ipe D., Mills R. G., Ward P.. 2001; Oral oseltamivir treatment of influenza in children. Pediatric Infectious Disease Journal20:127–133
    [Google Scholar]
  30. Woods J. M., Bethell R. C., Coates J. A., Healy N., Hiscox S. A., Pearson B. A., Ryan D. M., Ticehurst J., Tilling J., Walcott S. M.. 1993; 4-Guanidino-2,4-dideoxy-2,3-dehydro-N-acetylneuraminic acid is a highly effective inhibitor both of the sialidase (neuraminidase) and of growth of a wide range of influenza A and B viruses in vitro. Antimicrobial Agents and Chemotherapy37:1473–1479
    [Google Scholar]
  31. Yang P., Bansal A., Liu C., Air G. M.. 1997; Hemagglutinin specificity and neuraminidase coding capacity of neuraminidase-deficient influenza viruses. Virology229:155–165
    [Google Scholar]
  32. Zambon M., Hayden F. G.. 2001; Position statement: global neuraminidase inhibitor susceptibility network. Antiviral Research49:147–156
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-11-2683
Loading
/content/journal/jgv/10.1099/0022-1317-83-11-2683
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error