1887

Abstract

The modes of evolution of the proteins of were investigated with a maximum-likelihood method based on estimation of the ratio between non-synonymous and synonymous substitution rates. Evidence for diversifying selection was obtained for the 6K2 protein (one amino acid position) and coat protein (24 amino acid positions). Amino acid sites in the coat proteins of other potyviruses (, ) were also found to be under diversifying selection. Most of the sites belonged to the N-terminal domain, which is exposed to the exterior of the virion particle. Several of these amino acid positions in the coat proteins were shared between some of these three potyviruses. Identification of diversifying selection events in these different proteins will help to unravel their biological functions and is essential to an understanding of the evolutionary constraints exerted on the potyvirus genome. The hypothesis of a link between evolutionary constraints due to host plants and occurrence of diversifying selection is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-10-2563
2002-10-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/10/0832563a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-10-2563&mimeType=html&fmt=ahah

References

  1. Arazi, T., Shiboleth, Y. M. & Gal-On, A. ( 2001; ). A nonviral peptide can replace the entire N terminus of zucchini yellow mosaic potyvirus coat protein and permits viral systemic infection. Journal of Virology 75, 6329-6336.[CrossRef]
    [Google Scholar]
  2. Atreya, C. D., Raccah, B. & Pirone, T. P. ( 1990; ). A point mutation in the coat protein abolishes aphid transmissibility of a potyvirus. Virology 178, 161-165.[CrossRef]
    [Google Scholar]
  3. Atreya, P. L., Atreya, C. D. & Pirone, T. P. ( 1991; ). Amino acid substitutions in the coat protein result in loss of insect transmissibility of a plant virus. Proceedings of the National Academy of Sciences, USA 88, 7887-7891.[CrossRef]
    [Google Scholar]
  4. Atreya, P. L., Lopez-Moya, J. J., Chu, M., Atreya, C. D. & Pirone, T. P. ( 1995; ). Mutational analysis of the coat protein N-terminal amino acids involved in potyvirus transmission by aphids. Journal of General Virology 76, 265-270.[CrossRef]
    [Google Scholar]
  5. Bandelt, H. J. & Dress, A. W. M. ( 1992; ). Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Molecular Phylogenetics and Evolution 1, 242-252.[CrossRef]
    [Google Scholar]
  6. Baratova, L. A., Efimov, A. V., Dobrov, E. N., Fedorova, N. V., Hunt, R., Badun, G. A., Ksenofontov, A. L., Torrance, L. & Järvekülg, L. ( 2001; ). In situ spatial organization of potato virus A coat protein subunits as assessed by tritium bombardment. Journal of Virology 75, 9696-9702.[CrossRef]
    [Google Scholar]
  7. Blancard, D. (1998). Maladies du Tabac. Observer, Identifier, Lutter. Edited by INRA. Paris, France.
  8. Blanco-Urgoiti, B., Sánchez, F., Pérez de San Román, C., Dopazo, J. & Ponz, F. ( 1998; ). Potato virus Y group C isolates are a homogeneous pathotype but two different genetic strains. Journal of General Virology 79, 2037-2042.
    [Google Scholar]
  9. Chu, M., Lopez-Moya, J. J., Llave-Correas, C. & Pirone, T. P. ( 1997; ). Two separate regions in the genome of tobacco etch virus contain determinants of the wilting response of Tabasco pepper. Molecular Plant–Microbe Interactions 10, 472-480.[CrossRef]
    [Google Scholar]
  10. d’Aquino, L., Dalmay, T., Burgyan, J., Ragozzino, A. & Scala, F. ( 1995; ). Host range and sequence analysis of an isolate of potato virus Y inducing veinal necrosis in pepper. Plant Disease 79, 1046-1050.[CrossRef]
    [Google Scholar]
  11. Dolja, V. V., Herndon, K. L., Pirone, T. P. & Carrington, J. C. ( 1993; ). Spontaneous mutagenesis of a plant potyvirus genome after insertion of a foreign gene. Journal of Virology 67, 5968-5975.
    [Google Scholar]
  12. Dolja, V. V., Haldeman, R., Robertson, N. L., Dougherty, W. G. & Carrington, J. C. ( 1994; ). Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. EMBO Journal 13, 1482-1491.
    [Google Scholar]
  13. Dolja, V. V., Haldeman-Cahill, R., Montgomery, A. E., Vandenbosch, K. A. & Carrington, J. C. ( 1995; ). Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology 206, 1007-1016.[CrossRef]
    [Google Scholar]
  14. Dosba, F., Maison, P., Lansac, M. & Massonie, G. ( 1987; ). Experimental transmission of plum pox virus (PPV) to Prunus mahaleb and Prunus avium. Journal of Phytopathology 120, 199-204.[CrossRef]
    [Google Scholar]
  15. Dougherty, W. G. & Carrington, J. C. ( 1988; ). Expression and function of potyviral gene products. Annual Review of Phytopathology 26, 123-143.[CrossRef]
    [Google Scholar]
  16. Fakhfakh, H., Makni, M., Robaglia, C., Elgaaied, A. & Marrakchi, M. ( 1995; ). Polymorphisme des régions capside et 3′ NTR de 3 isolats tunisiens du virus Y de la pomme de terre (PVY). Agronomie 15, 569-579.[CrossRef]
    [Google Scholar]
  17. Felsenstein, J. (1993). phylip: phylogenetic inference package, version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle, USA.
  18. Fraile, A., Malpica, J. M., Aranda, M. A., Rodrı́guez-Cerezo, E. & Garcı́a-Arenal, F. ( 1996; ). Genetic diversity in tobacco mild green mosaic tobamovirus infecting the wild plant Nicotiana glauca. Virology 223, 148-155.[CrossRef]
    [Google Scholar]
  19. Garcı́a-Arenal, F., Fraile, A. & Malpica, J. M. ( 2001; ). Variability and genetic structure of plant virus populations. Annual Review of Phytopathology 39, 157-186.[CrossRef]
    [Google Scholar]
  20. Gebré-Selassié, K., Marchoux, G., Delecolle, B. & Pochard, E. ( 1985; ). Variabilité naturelle des souches du virus Y de la pomme de terre dans les cultures de piment du sud-est de la France. Caractérisation et classification en pathotypes. Agronomie 5, 621-630.[CrossRef]
    [Google Scholar]
  21. Glais, L., Tribodet, M. & Kerlan, C. ( 2002; ). Genomic variability in potato potyvirus Y (PVY): evidence that PVYNW and PVYNTN variants are single to multiple recombinants between PVYO and PVYN isolates. Archives of Virology 147, 363-378.[CrossRef]
    [Google Scholar]
  22. Gubler, U. & Hoffman, B. J. ( 1983; ). A simple and very efficient method for generating cDNA libraries. Gene 25, 263-269.[CrossRef]
    [Google Scholar]
  23. Hillis, D. M. & Bull, J. J. ( 1993; ). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42, 182-192.[CrossRef]
    [Google Scholar]
  24. Holmes, E. C., Worobey, M. & Rambaut, A. ( 1999; ). Phylogenetic evidence for recombination in dengue virus. Molecular Biology and Evolution 16, 405-409.[CrossRef]
    [Google Scholar]
  25. Huson, D. H. ( 1998; ). SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14, 68-73.[CrossRef]
    [Google Scholar]
  26. Kimura, M. (1983). The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.
  27. Legnani, R. (1995). Analyse, comparaison et exploitation des résistances au virus Y de la pomme de terre (PVY) et au tobacco etch virus (TEV) chez la tomate. PhD thesis, University of Montpellier II, France.
  28. Li, W.-H. (1997). Molecular Evolution. Sunderland, MA: Sinauer Associates.
  29. McDonald, J. G. & Kristjansson, G. T. ( 1993; ). Properties of strains of potato virus YN in North America. Plant Disease 77, 87-89.[CrossRef]
    [Google Scholar]
  30. Marie-Jeanne Tordo, V., Chachulska, A. M., Fakhfakh, H., Le Romancer, M., Robaglia, C. & Astier-Manifacier, S. ( 1995; ). Sequence polymorphism in the 5′NTR and in the P1 coding region of potato virus Y genomic RNA. Journal of General Virology 76, 939-949.[CrossRef]
    [Google Scholar]
  31. Mestre, P., Brigneti, G. & Baulcombe, D. C. ( 2000; ). An Ry-mediated resistance response in potato requires the intact active site of the NIa proteinase from potato virus Y. Plant Journal 23, 653-661.[CrossRef]
    [Google Scholar]
  32. Nei, M. (1987). Molecular Evolutionary Genetics. New York: Columbia University Press.
  33. Nemchinov, L., Hadidi, A., Maiss, E., Cambra, M., Candresse, T. & Damsteegt, V. ( 1996; ). Sour cherry strain of plum pox potyvirus (PPV): molecular and serological evidence for a new subgroup of PPV strains. Phytopathology 86, 1215-1221.[CrossRef]
    [Google Scholar]
  34. Nielsen, R. & Yang, Z. ( 1998; ). Likelihood models for detecting positively selected amino acid sites and application to the HIV-1 envelope gene. Genetics 148, 929-936.
    [Google Scholar]
  35. Revers, F., Le Gall, O., Candresse, T., Le Romancer, M. & Dunez, J. ( 1996; ). Frequent occurrence of recombinant potyvirus isolates. Journal of General Virology 77, 1953-1965.[CrossRef]
    [Google Scholar]
  36. Riechmann, J. L., Laı́n, S. & Garcı́a, J. A. ( 1992; ). Highlights and prospects of potyvirus molecular biology. Journal of General Virology 73, 1-16.[CrossRef]
    [Google Scholar]
  37. Rojas, M. R., Zerbini, F. M., Allison, R. F., Gilbertson, R. L. & Lucas, W. J. ( 1997; ). Capsid protein and helper component-proteinase function as potyvirus cell-to-cell movement proteins. Virology 237, 283-295.[CrossRef]
    [Google Scholar]
  38. Schaad, M. C., Jensen, P. E. & Carrington, J. C. ( 1997; ). Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. EMBO Journal 16, 4049-4059.[CrossRef]
    [Google Scholar]
  39. Shukla, D. D., Ward, C. W. & Brunt, A. A. (1994). Genome structure, variation and function. In The Potyviridae, pp. 74–110. Wallingford, UK: CAB International.
  40. Smith, G. R., Borg, Z., Lockhart, B. E. L., Braithwaite, K. S. & Gibbs, M. J. ( 2000; ). Sugarcane yellow leaf virus: a novel member of the Luteoviridae that probably arose by inter-species recombination. Journal of General Virology 81, 1865-1869.
    [Google Scholar]
  41. Stavolone, L., Alioto, D., Ragozzino, A. & Laliberté, J.-F. ( 1998; ). Variability among turnip mosaic potyvirus isolates. Phytopathology 88, 1200-1204.[CrossRef]
    [Google Scholar]
  42. Stobbs, L. W., Poysa, V. & Van Schagen, J. G. ( 1994; ). Susceptibility of cultivars of tomato and pepper to a necrotic strain of potato virus Y. Canadian Journal of Plant Pathology 16, 43-48.
    [Google Scholar]
  43. Tamura, K. & Nei, M. ( 1993; ). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10, 512-526.
    [Google Scholar]
  44. Valkonen, J. P. T., Kyle, M. M. & Slack, S. A. ( 1996; ). Comparison of resistance to potyviruses within Solanaceae: infection of potatoes with tobacco etch potyvirus and peppers with potato A and Y potyviruses. Annals of Applied Biology 129, 25-38.[CrossRef]
    [Google Scholar]
  45. Wada, Y., Iwai, H., Ogawa, Y. & Arai, K. ( 2000; ). Comparison of pathogenicity and nucleotide sequences of 3′-terminal regions of Bean yellow mosaic virus isolates from Gladiolus. Journal of General Plant Pathology 66, 345-352.[CrossRef]
    [Google Scholar]
  46. Xia, X. (1999). dambe (Software Package for Data Analysis in Molecular Biology and Evolution). User Manual. Hong Kong: Department of Ecology and Biodiversity, University of Hong Kong.
  47. Xia, X. & Xie, Z. ( 2001; ). dambe: software package for data analysis in molecular biology and evolution. Journal of Heredity 92, 371-373.[CrossRef]
    [Google Scholar]
  48. Yang, Z. ( 1997; ). paml: a program package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences 13, 555-556.
    [Google Scholar]
  49. Yang, Z. ( 1998; ). Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Molecular Biology and Evolution 15, 568-573.[CrossRef]
    [Google Scholar]
  50. Yang, Z. & Bielawski, J. P. ( 2000; ). Statistical methods for detecting molecular adaptation. Trends in Ecology & Evolution 15, 496-503.[CrossRef]
    [Google Scholar]
  51. Yang, Z. & Nielsen, R. ( 2000; ). Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Molecular Biology and Evolution 17, 32-43.[CrossRef]
    [Google Scholar]
  52. Yang, Z., Nielsen, R., Goldman, N. & Pedersen, A.-M. K. ( 2000; ). Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155, 431-449.
    [Google Scholar]
  53. Zhang, J., Kumar, S. & Nei, M. ( 1997; ). Small-sample tests of episodic adaptive evolution: a case study of primate lysozymes. Molecular Biology and Evolution 14, 1335-1338.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-10-2563
Loading
/content/journal/jgv/10.1099/0022-1317-83-10-2563
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error