Requirements for RNA heterodimerization of the human immunodeficiency virus type 1 (HIV-1) and HIV-2 genomes Free

Abstract

Retroviruses are prone to recombination because they package two copies of the RNA genome. Whereas recombination is a frequent event within the human immunodeficiency virus type 1 (HIV-1) and HIV-2 groups, no HIV-1/HIV-2 recombinants have been reported thus far. The possibility of forming HIV-1/HIV-2 RNA heterodimers was studied . In both viruses, the dimer initiation site (DIS) hairpin is used to form dimers, but these motifs appear too dissimilar to allow RNA heterodimer formation. Multiple mutations were introduced into the HIV-2 DIS element to gradually mimic the HIV-1 hairpin. First, the loop-exposed palindrome of HIV-1 was inserted. This self-complementary sequence motif forms the base pair interactions of the kissing-loop (KL) dimer complex, but such a modification is not sufficient to permit RNA heterodimer formation. Next, the HIV-2 DIS loop size was shortened from 11 to 9 nucleotides, as in the HIV-1 DIS motif. This modification also results in the presentation of the palindromes in the same position within the hairpin loop. The change yielded a modest level of RNA heterodimers, which was not significantly improved by additional sequence changes in the loop and top base pair. No isomerization of the KL dimer to the extended duplex dimer form was observed for the heterodimers. These combined results indicate that recombination between HIV-1 and HIV-2 is severely restricted at the level of RNA dimerization.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-10-2533
2002-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/10/0832533a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-10-2533&mimeType=html&fmt=ahah

References

  1. Awang G., Sen D. 1993; Mode of dimerization of HIV-1 genomic RNA. Biochemistry 32:11453–11457
    [Google Scholar]
  2. Balakrishnan M., Fay P. J., Bambara R. A. 2001; The kissing hairpin sequence promotes recombination within the HIV-1 5′ leader region. Journal of Biological Chemistry 276:36482–36492
    [Google Scholar]
  3. Beerens N., Groot F., Berkhout B. 2001; Initiation of HIV-1 reverse transcription is regulated by a primer activation signal. Journal of Biological Chemistry 276:31247–31256
    [Google Scholar]
  4. Bender W., Chien Y. H., Chattopadhyay S., Vogt P. K., Gardner M. B., Davidson N. 1978; High-molecular-weight RNAs of AKR, NZB, and wild mouse viruses and avian reticuloendotheliosis virus all have similar dimer structures. Journal of Virology 25:888–896
    [Google Scholar]
  5. Berkhout B. 1996; Structure and function of the human immunodeficiency virus leader RNA. Progress in Nucleic Acid Research and Molecular Biology 54:1–34
    [Google Scholar]
  6. Berkhout B., van Wamel J. L. 1996; Role of the DIS hairpin in replication of human immunodeficiency virus type 1. Journal of Virology 70:6723–6732
    [Google Scholar]
  7. Berkhout B., Gatignol A., Silver J., Jeang K. T. 1990; Efficient trans-activation by the HIV-2 Tat protein requires a duplicated TAR RNA structure. Nucleic Acids Research 18:1839–1846
    [Google Scholar]
  8. Berkhout B., Essink B. B., Schoneveld I. 1993; In vitro dimerization of HIV-2 leader RNA in the absence of PuGGAPuA motifs. FASEB Journal 7:181–187
    [Google Scholar]
  9. Bobkov A., Kazennova E., Selimova L., Bobkova M., Khanina T., Ladnaya N., Kravchenko A., Pokrovsky V., Cheingsong-Popov R., Weber J. 1998; A sudden epidemic of HIV type 1 among injecting drug users in the former Soviet Union: identification of subtype A, subtype B, and novel gag A/ env B recombinants. AIDS Research and Human Retroviruses 14:669–676
    [Google Scholar]
  10. Bukovsky A. A., Song J. P., Naldini L. 1999; Interaction of human immunodeficiency virus-derived vectors with wild-type virus in transduced cells. Journal of Virology 73:7087–7092
    [Google Scholar]
  11. Carr J. K., Salminen M. O., Koch C., Gotte D., Artenstein A. W., Hegerich P. A., St Louis D., Burke D. S., McCutchan F. E. 1996; Full-length sequence and mosaic structure of a human immunodeficiency virus type 1 isolate from Thailand. Journal of Virology 70:5935–5943
    [Google Scholar]
  12. Carr J. K., Salminen M. O., Albert J., Sanders-Buell E., Gotte D., Birx D. L., McCutchan F. E. 1998; Full genome sequences of human immunodeficiency virus type 1 subtypes G and A/G intersubtype recombinants. Virology 247:22–31
    [Google Scholar]
  13. Clever J. L., Parslow T. G. 1997; Mutant human immunodeficiency virus type 1 genomes with defects in RNA dimerization or encapsidation. Journal of Virology 71:3407–3414
    [Google Scholar]
  14. Clever J. L., Wong M. L., Parslow T. G. 1996; Requirements for kissing-loop-mediated dimerization of human immunodeficiency virus RNA. Journal of Virology 70:5902–5908
    [Google Scholar]
  15. Coffin J. M. 1990; Retroviridae and their replication. In Fields Virology, 2nd edn. Edited by Fields B. N., Knipe D. M. New York: Raven Press;
    [Google Scholar]
  16. Dardel F., Marquet R., Ehresmann C., Ehresmann B., Blanquet S. 1998; Solution studies of the dimerization initiation site of HIV-1 genomic RNA. Nucleic Acids Research 26:3567–3571
    [Google Scholar]
  17. Das A. T., Klaver B., Klasens B. I., van Wamel J. L., Berkhout B. 1997; A conserved hairpin motif in the R-U5 region of the human immunodeficiency virus type 1 RNA genome is essential for replication. Journal of Virology 71:2346–2356
    [Google Scholar]
  18. DiFronzo N. L., Holland C. A. 1993; A direct demonstration of recombination between an injected virus and endogenous viral sequences, resulting in the generation of mink cell focus-inducing viruses in AKR mice. Journal of Virology 67:3763–3770
    [Google Scholar]
  19. Dillon P. J., Nelbock P., Perkins A., Rosen C. A. 1990; Function of the human immunodeficiency virus types 1 and 2 Rev proteins is dependent on their ability to interact with a structured region present in env gene mRNA. Journal of Virology 64:4428–4437
    [Google Scholar]
  20. Dirac A. M., Huthoff H., Kjems J., Berkhout B. 2001; The dimer initiation site hairpin mediates dimerization of the human immunodeficiency virus type 2 RNA genome. Journal of Biological Chemistry 276:32345–32352
    [Google Scholar]
  21. Dirac A. M., Huthoff H., Kjems J., Berkhout B. 2002; Regulated HIV-2 RNA dimerization by means of alternative RNA conformations. Nucleic Acids Research 30:2647–2655
    [Google Scholar]
  22. Emerman M., Guyader M., Montagnier L., Baltimore D., Muesing M. A. 1987; The specificity of the human immunodeficiency virus type 2 transactivator is different from that of human immunodeficiency virus type 1. EMBO Journal 6:3755–3760
    [Google Scholar]
  23. Evans L. A., Moreau J., Odehouri K., Seto D., Thomson-Honnebier G., Legg H., Barboza A., Cheng-Mayer C., Levy J. A. 1988; Simultaneous isolation of HIV-1 and HIV-2 from an AIDS patient. Lancet ii:1389–1391
    [Google Scholar]
  24. Gao F., Yue L., Robertson D. L., Hill S. C., Hui H., Biggar R. J., Neequaye A. E., Whelan T. M., Ho D. D., Shaw G. M. and others 1994; Genetic diversity of human immunodeficiency virus type 2: evidence for distinct sequence subtypes with differences in virus biology. Journal of Virology 68:7433–7447
    [Google Scholar]
  25. George J. R., Ou C. Y., Parekh B., Brattegaard K., Brown V., Boateng E., De Cock K. M. 1992; Prevalence of HIV-1 and HIV-2 mixed infections in Cote d′Ivoire. Lancet 340:337–339
    [Google Scholar]
  26. Girard F., Barbault F., Gouyette C., Huynh-Dinh T., Paoletti J., Lancelot G. 1999; Dimer initiation sequence of HIV-1Lai genomic RNA: NMR solution structure of the extended duplex. Journal of Biomolecular Structure and Dynamics 16:1145–1157
    [Google Scholar]
  27. Gotte M., Li X., Wainberg M. A. 1999; HIV-1 reverse transcription: a brief overview focused on structure–function relationships among molecules involved in initiation of the reaction. Archives of Biochemistry and Biophysics 365:199–210
    [Google Scholar]
  28. Greatorex J., Lever A. 1998; Retroviral RNA dimer linkage. Journal of General Virology 79:2877–2882
    [Google Scholar]
  29. Greatorex J. S., Laisse V., Dockhelar M. C., Lever A. M. 1996; Sequences involved in the dimerisation of human T cell leukaemia virus type-1 RNA. Nucleic Acids Research 24:2919–2923
    [Google Scholar]
  30. Haddrick M., Lear A. L., Cann A. J., Heaphy S. 1996; Evidence that a kissing loop structure facilitates genomic RNA dimerisation in HIV-1. Journal of Molecular Biology 259:58–68
    [Google Scholar]
  31. Hoglund S., Ohagen A., Goncalves J., Panganiban A. T., Gabuzda D. 1997; Ultrastructure of HIV-1 genomic RNA. Virology 233:271–279
    [Google Scholar]
  32. Huthoff H., Berkhout B. 2001; Two alternating structures of the HIV-1 leader RNA. RNA 7:143–157
    [Google Scholar]
  33. Jossinet F., Lodmell J. S., Ehresmann C., Ehresmann B., Marquet R. 2001; Identification of the in vitro HIV-2/SIV RNA dimerization site reveals striking differences with HIV-1. Journal of Biological Chemistry 276:5598–5604
    [Google Scholar]
  34. Kaye J. F., Lever A. M. 1998; Nonreciprocal packaging of human immunodeficiency virus type 1 and type 2 RNA: a possible role for the p2 domain of Gag in RNA encapsidation. Journal of Virology 72:5877–5885
    [Google Scholar]
  35. Laughrea M., Jette L. 1994; A 19-nucleotide sequence upstream of the 5′ major splice donor is part of the dimerization domain of human immunodeficiency virus 1 genomic RNA. Biochemistry 33:13464–13474
    [Google Scholar]
  36. Laughrea M., Jette L. 1996; Kissing-loop model of HIV-1 genome dimerization: HIV-1 RNAs can assume alternative dimeric forms, and all sequences upstream or downstream of hairpin 248–271 are dispensable for dimer formation. Biochemistry 35:1589–1598
    [Google Scholar]
  37. Laughrea M., Jette L., Mak J., Kleiman L., Liang C., Wainberg M. A. 1997; Mutations in the kissing-loop hairpin of human immunodeficiency virus type 1 reduce viral infectivity as well as genomic RNA packaging and dimerization. Journal of Virology 71:3397–3406
    [Google Scholar]
  38. Lever A. M. 2000; HIV RNA packaging and lentivirus-based vectors. Advances in Pharmacology 48:1–28
    [Google Scholar]
  39. Lodmell J. S., Ehresmann C., Ehresmann B., Marquet R. 2000; Convergence of natural and artificial evolution on an RNA loop–loop interaction: the HIV-1 dimerization initiation site. RNA 6:1267–1276
    [Google Scholar]
  40. Lund A. H., Mikkelsen J. G., Schmidt J., Duch M., Pedersen F. S. 1999; The kissing-loop motif is a preferred site of 5′ leader recombination during replication of SL3-3 murine leukemia viruses in mice. Journal of Virology 73:9614–9618
    [Google Scholar]
  41. McBride M. S., Panganiban A. T. 1996; The human immunodeficiency virus type 1 encapsidation site is a multipartite RNA element composed of functional hairpin structures. Journal of Virology 70:2963–2973
    [Google Scholar]
  42. Malim M. H., Bohnlein S., Fenrick R., Le S. Y., Maizel J. V., Cullen B. R. 1989; Functional comparison of the Rev trans-activators encoded by different primate immunodeficiency virus species. Proceedings of the National Academy of Sciences, USA 86:8222–8226
    [Google Scholar]
  43. Marquet R., Baudin F., Gabus C., Darlix J. L., Mougel M., Ehresmann C., Ehresmann B. 1991; Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism. Nucleic Acids Research 19:2349–2357
    [Google Scholar]
  44. Mathews D. H., Sabina J., Zuker M., Turner D. H. 1999; Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. Journal of Molecular Biology 288:911–940
    [Google Scholar]
  45. Mikkelsen J. G., Lund A. H., Kristensen K. D., Duch M., Sorensen M. S., Jorgensen P., Pedersen F. S. 1996; A preferred region for recombinational patch repair in the 5′ untranslated region of primer binding site-impaired murine leukemia virus vectors. Journal of Virology 70:1439–1447
    [Google Scholar]
  46. Mujeeb A., Clever J. L., Billeci T. M., James T. L., Parslow T. G. 1998; Structure of the dimer initiation complex of HIV-1 genomic RNA. Nature Structural Biology 5:432–436
    [Google Scholar]
  47. Mujeeb A., Parslow T. G., Zarrinpar A., Das C., James T. L. 1999; NMR structure of the mature dimer initiation complex of HIV-1 genomic RNA. FEBS Letters 458:387–392
    [Google Scholar]
  48. Muriaux D., Girard P. M., Bonnet-Mathoniere B., Paoletti J. 1995; Dimerization of HIV-1Lai RNA at low ionic strength. An autocomplementary sequence in the 5′ leader region is evidenced by an antisense oligonucleotide. Journal of Biological Chemistry 270:8209–8216
    [Google Scholar]
  49. Muriaux D., De Rocquigny H., Roques B. P., Paoletti J. 1996a; NCp7 activates HIV-1Lai RNA dimerization by converting a transient loop–loop complex into a stable dimer. Journal of Biological Chemistry 271:33686–33692
    [Google Scholar]
  50. Muriaux D., Fosse P., Paoletti J. 1996b; A kissing complex together with a stable dimer is involved in the HIV-1Lai RNA dimerization process in vitro. Biochemistry 35:5075–5082
    [Google Scholar]
  51. Naldini L., Blomer U., Gallay P., Ory D., Mulligan R., Gage F. H., Verma I. M., Trono D. 1996; In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267
    [Google Scholar]
  52. Negroni M., Buc H. 2001; Retroviral recombination: what drives the switch?. Nature Reviews in Molecular and Cellular Biology 2:151–155
    [Google Scholar]
  53. Oude Essink B. B., Das A. T., Berkhout B. 1996; HIV-1 reverse transcriptase discriminates against non-self tRNA primers. Journal of Molecular Biology 264:243–254
    [Google Scholar]
  54. Paillart J. C., Marquet R., Skripkin E., Ehresmann B., Ehresmann C. 1994; Mutational analysis of the bipartite dimer linkage structure of human immunodeficiency virus type 1 genomic RNA. Journal of Biological Chemistry 269:27486–27493
    [Google Scholar]
  55. Paillart J. C., Westhof E., Ehresmann C., Ehresmann B., Marquet R. 1997; Non-canonical interactions in a kissing loop complex: the dimerization initiation site of HIV-1 genomic RNA. Journal of Molecular Biology 270:36–49
    [Google Scholar]
  56. Peeters M., Gershy-Damet G. M., Fransen K., Koffi K., Coulibaly M., Delaporte E., Piot P., van der Groen G. 1992; Virological and polymerase chain reaction studies of HIV-1/HIV-2 dual infection in Cote d’Ivoire. Lancet 340:339–340
    [Google Scholar]
  57. Peeters M., Liegeois F., Torimiro N., Bourgeois A., Mpoudi E., Vergne L., Saman E., Delaporte E., Saragosti S. 1999; Characterization of a highly replicative intergroup M/O human immunodeficiency virus type 1 recombinant isolated from a Cameroonian patient. Journal of Virology 73:7368–7375
    [Google Scholar]
  58. Piyasirisilp S., McCutchan F. E., Carr J. K., Sanders-Buell E., Liu W., Chen J., Wagner R., Wolf H., Shao Y., Lai S., Beyrer C., Yu X. F. 2000; A recent outbreak of human immunodeficiency virus type 1 infection in southern China was initiated by two highly homogeneous, geographically separated strains, circulating recombinant form AE and a novel BC recombinant. Journal of Virology 74:11286–11295
    [Google Scholar]
  59. Rizvi T. A., Panganiban A. T. 1993; Simian immunodeficiency virus RNA is efficiently encapsidated by human immunodeficiency virus type 1 particles. Journal of Virology 67:2681–2688
    [Google Scholar]
  60. Robertson D. L., Sharp P. M., McCutchan F. E., Hahn B. H. 1995; Recombination in HIV-1. Nature 374:124–126
    [Google Scholar]
  61. Robertson D. L., Anderson J. P., Bradac J. A., Carr J. K., Foley B., Funkhouser R. K., Gao F., Hahn B. H., Kalish M. L., Kuiken C., Learn G. H., Leitner T., McCutchan F., Osmanov S., Peeters M., Pieniazek D., Salminen M., Sharp P. M., Wolinsky S., Korber B. 2000; HIV-1 nomenclature proposal. Science 288:55–56
    [Google Scholar]
  62. St Louis D. C., Gotte D., Sanders-Buell E., Ritchey D. W., Salminen M. O., Carr J. K., McCutchan F. E. 1998; Infectious molecular clones with the nonhomologous dimer initiation sequences found in different subtypes of human immunodeficiency virus type 1 can recombine and initiate a spreading infection in vitro. Journal of Virology 72:3991–3998
    [Google Scholar]
  63. Sakuragi J. I., Panganiban A. T. 1997; Human immunodeficiency virus type 1 RNA outside the primary encapsidation and dimer linkage region affects RNA dimer stability in vivo. Journal of Virology 71:3250–3254
    [Google Scholar]
  64. Salminen M. O., Carr J. K., Robertson D. L., Hegerich P., Gotte D., Koch C., Sanders-Buell E., Gao F., Sharp P. M., Hahn B. H., Burke D. S., McCutchan F. E. 1997; Evolution and probable transmission of intersubtype recombinant human immunodeficiency virus type 1 in a Zambian couple. Journal of Virology 71:2647–2655
    [Google Scholar]
  65. Schwartzberg P., Colicelli J., Goff S. P. 1985; Recombination between a defective retrovirus and homologous sequences in host DNA: reversion by patch repair. Journal of Virology 53:719–726
    [Google Scholar]
  66. Skripkin E., Paillart J. C., Marquet R., Ehresmann B., Ehresmann C. 1994; Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro. Proceedings of the National Academy of Sciences, USA 91:4945–4949
    [Google Scholar]
  67. Sundquist W. I., Heaphy S. 1993; Evidence for interstrand quadruplex formation in the dimerization of human immunodeficiency virus 1 genomic RNA. Proceedings of the National Academy of Sciences, USA 90:3393–3397
    [Google Scholar]
  68. Takehisa J., Zekeng L., Ido E., Yamaguchi-Kabata Y., Mboudjeka I., Harada Y., Miura T., Kaptu L., Hayami M. 1999; Human immunodeficiency virus type 1 intergroup (M/O) recombination in Cameroon. Journal of Virology 73:6810–6820
    [Google Scholar]
  69. White S. M., Renda M., Nam N. Y., Klimatcheva E., Zhu Y., Fisk J., Halterman M., Rimel B. J., Federoff H., Pandya S., Rosenblatt J. D., Planelles V. 1999; Lentivirus vectors using human and simian immunodeficiency virus elements. Journal of Virology 73:2832–2840
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-10-2533
Loading
/content/journal/jgv/10.1099/0022-1317-83-10-2533
Loading

Data & Media loading...

Most cited Most Cited RSS feed