1887

Abstract

The human immunodeficiency virus type 1 (HIV-1) pre-integration complex (PIC) is a cytoplasmic nucleoprotein structure derived from the core of the virion and is responsible for reverse transcription of viral RNA to cDNA, transport to the nucleus and integration of the cDNA into the genome of the infected target cell. Others have shown by Mu phage-mediated PCR footprinting that only the LTRs of the cDNA of PICs isolated early in infection are protected by bound protein, while the rest of the genome is susceptible to nuclease attack. Here, using DNase I footprinting, we confirmed that the majority of the cDNA of PICs isolated at 8·5 h after infection with cell-free virus was sensitive to digestion with DNase I and that only part of the LTRs (approximately 6% of the total cDNA) was protected. However, PICs isolated 90 min later (at 10 h post-infection) were very different in that the majority (approximately 90%) of cDNA was protected from nuclease degradation. These late PICs were integration active . We conclude that HIV-1 has at least two types of PIC, an early PIC characterized by protein bound only at the LTRs, and a late, and possibly more mature form, in which protein is bound along the length of the cDNA.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-10-2523
2002-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/10/0832523a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-10-2523&mimeType=html&fmt=ahah

References

  1. Bo Y.-C., Miller M. D., Bushman F. D., Orgel L. E. 1996; Target-sequence preferences of HIV-1 integration complexes in vitro. Virology 222:283–288
    [Google Scholar]
  2. Bowerman B., Bishop P. O., Bishop J. O., Varmus H. E. 1989; A nucleoprotein complex mediates the integration of retroviral DNA. Genes & Development 3:469–478
    [Google Scholar]
  3. Brown P. O. 1997; Integration. In Retroviruses pp 161–203 Edited by Coffin J., Hughes S. H., Varmus H. E. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  4. Bukrinskaya A. G., Ghorpade A., Heinzinger N. K., Smithgall T. E., Lewis R. E., Stevenson M. 1996; Phosphorylation-dependent human immunodeficiency virus type 1 infection and nuclear targeting of viral DNA. Proceedings of the National Academy of Sciences, USA 93:367–371
    [Google Scholar]
  5. Bukrinsky M. I., Sharova N., Dempsey M. P., Stanwick T. L., Bukrinskaya A. G., Haggerty S., Stevenson M. 1992; Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proceedings of the National Academy of Sciences, USA 89:6580–6584
    [Google Scholar]
  6. Bukrinsky M. I., Haggerty S., Dempsey M. P., Sharova N., Adzhubel A., Spitz L., Lewis P., Goldfarb D., Emerman M., Stevenson M. 1993a; A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365:666–669
    [Google Scholar]
  7. Bukrinsky M. I., Sharova N., McDonald T. L., Pushkarskaya T., Tarpley W. G., Stevenson M. 1993b; Association of integrase, matrix and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proceedings of the National Academy of Sciences, USA 90:6125–6129
    [Google Scholar]
  8. Bushman F. D., Fujiwara T., Craigie R. 1990; Retroviral integration directed by HIV integration protein in vitro. Science 249:1555–1558
    [Google Scholar]
  9. Charneau P., Mirambeau G., Roux P., Paulous S., Buc H., Clavel F. 1994; HIV-1 reverse transcription: a termination step at the centre of the genome. Journal of Molecular Biology 241:651–662
    [Google Scholar]
  10. Chen H., Wei S.-Q., Engelman A. 1999; Multiple integrase functions are required to form the native structure of the human immunodeficiency virus type 1 intasome. Journal of Biological Chemistry 274:17358–17364
    [Google Scholar]
  11. Ellison V., Brown P. O. 1994; A stable complex between integrase and viral DNA ends mediates human immunodeficiency virus integration in vitro. Proceedings of the National Academy of Sciences, USA 91:7316–7320
    [Google Scholar]
  12. Farnet C. M., Haseltine W. A. 1990; Integration of human immunodeficiency virus type 1 DNA in vitro. Proceedings of the National Academy of Sciences, USA 87:4164–4168
    [Google Scholar]
  13. Farnet C. M., Haseltine W. A. 1991; Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. Proceedings of the National Academy of Sciences USA 65, 1910-1915
    [Google Scholar]
  14. Farnet C. M., Bushman F. D. 1997; HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell 88:483–492
    [Google Scholar]
  15. Fouchier R. A. M., Meyer B. E., Simon J. H. M., Fischer U., Malim M. H. 1997; HIV-1 infection of non-dividing cells: evidence that the amino-terminal basic region of the viral matrix protein is important for Gag processing but not for post-entry nuclear import. EMBO Journal 16:4531–4539
    [Google Scholar]
  16. Fujiwara T., Mizuuchi K. 1988; Retroviral DNA integration: structure of an integration intermediate. Cell 54:497–504
    [Google Scholar]
  17. Gallay P., Swingler S., Aiken C., Trono D. 1995a; HIV-1 infection of non-dividing cells: C-terminal tyrosine phosphorylation of the viral matrix protein is a key regulator. Cell 80:379–388
    [Google Scholar]
  18. Gallay P., Swingler S., Song J., Bushman F., Trono D. 1995b; HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase. Cell 83:569–576
    [Google Scholar]
  19. Gallay P., Stitt V., Munday M., Oettinger M., Trono D. 1996; Role of the karyopherin pathway in human immunodeficiency virus type 1 nuclear import. Journal of Virology 70:1027–1032
    [Google Scholar]
  20. Gallay P., Hope T., Chin D., Trono D. 1997; HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karopherin pathway. Proceedings of the National Academy of Sciences, USA 94:9825–9830
    [Google Scholar]
  21. Heinzinger N. K., Bukrinsky M. I., Haggerty S., Ragland A. M., Kewelramani V., Lee M.-A., Gendelman H. E., Ratner L., Stevenson M., Emerman M. 1994; The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proceedings of the National Academy of Sciences, USA 91:7311–7315
    [Google Scholar]
  22. Jenkins Y., McEntee M., Weis K., Greene W. C. 1998; Characterization of HIV-1 Vpr nuclear import: analysis of signals and pathways. Journal of Cell Biology 143:875–885
    [Google Scholar]
  23. Karageorgos L., Li P., Burrell C. J. 1993; Characterization of HIV replication complexes early after cell-to-cell infection. AIDS Research and Human Retroviruses 9:817–823
    [Google Scholar]
  24. Karni O., Friedler A., Zakai N., Loyter A. 1998; A peptide derived from the N-terminal end of HIV-1 Vpr promotes nuclear import in permeabilized cells: elucidation of the NLS region of the Vpr. FEBS Letters 429:421–425
    [Google Scholar]
  25. Levy J. A. 1998 HIV and the Pathogenesis of AIDS, 2nd edn. Herndon, VA: ASM Press;
    [Google Scholar]
  26. Li P., Burrell C. J. 1992; Synthesis of human immunodeficiency virus DNA in a cell-to-cell transmission model. AIDS Research and Human Retroviruses 8:253–259
    [Google Scholar]
  27. McLain L., Dimmock N. J. 1994; Single- and multi-hit kinetics of immunoglobulin G neutralization of human immunodeficiency virus type 1 by monoclonal antibodies. Journal of General Virology 75:1457–1460
    [Google Scholar]
  28. Miller M. D., Farnet C. M., Bushman F. D. 1997; Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. Journal of Virology 71:5382–5390
    [Google Scholar]
  29. Pluymers W., Cherepanov P., Schols D., de Clercq E., Debyser Z. 1999; Nuclear localization of human immunodeficiency virus type 1 integrase expressed as a fusion protein with green fluorescence protein. Virology 258:327–332
    [Google Scholar]
  30. Popov S., Rexach M., Ratner L., Blobel G., Bukrinsky M. 1998a; Viral protein R regulates docking of the HIV-1 preintegration complex to the nuclear pore complex. Journal of Biological Chemistry 273:13347–13352
    [Google Scholar]
  31. Popov S., Rexach M., Zybarth G., Reiling N., Lee N.-A., Ratner L., Lane C. M., Moore M. S., Blobel G., Bukrinsky M. 1998b; Virus protein R regulates nuclear import of the HIV-1 pre-integration complex. EMBO Journal 17:909–917
    [Google Scholar]
  32. Popovic M., Sarngadharan M. G., Read E., Gallo R. C. 1984; Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224:497–500
    [Google Scholar]
  33. Pryciak P. M., Varmus H. E. 1992; Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell 69:769–780
    [Google Scholar]
  34. Salahuddin S. Z., Markham P. D., Wong-Staal F., Franchini G., Kalyanaraman V. S., Gallo R. C. 1983; Restricted expression of human T-cell leukemia-lymphoma virus (HTLV) in transformed human umbilical cord blood lymphocytes. Virology 129:51–64
    [Google Scholar]
  35. Vodicka M. A., Koepp D. M., Silver P. A., Emerman M. 1998; HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection. Genes & Development 12:175–185
    [Google Scholar]
  36. von Swedler U., Jornbluth R. S., Trono D. 1994; The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proceedings of the National Academy of Sciences, USA 91:6992–6996
    [Google Scholar]
  37. Wei S.-Q., Mizuuchi K., Craigie R. 1997; A large nucleoprotein complex assembly at the ends of the viral DNA mediates retroviral integration. EMBO Journal 16:7511–7520
    [Google Scholar]
  38. Whitcomb J. M., Hughes S. H. 1992; Retroviral reverse transcription and integration: progress and problems. Annual Review of Cell Biology 8:275–306
    [Google Scholar]
  39. Whitwam T., Poeschla E. M. 2001; Identification of central DNA flap in feline immunodeficiency virus. Journal of Virology 75:9407–9414
    [Google Scholar]
  40. Wu X., Liu H., Xiao H., Conway J. A., Hehl E., Kalpana G. V., Prasad V., Kappes J. C. 1999; Human immunodeficiency virus type 1 integrase protein promotes reverse transcription through specific interactions with the nucleoprotein reverse transcription complex. Journal of Virology 73:2126–2135
    [Google Scholar]
  41. Zennou V., Petit C., Guetard D., Nehbass U., Montagnier L., Charneau P. 2000; Genome nuclear import is mediated by a central DNA flap. Cell 101:173–185
    [Google Scholar]
  42. Zhang S., Pointer D., Singer G., Feng Y., Park K., Zhao L.-J. 1998; Direct binding to nucleic acids by Vpr of human immunodeficiency virus type 1. Gene 212:157–166
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-10-2523
Loading
/content/journal/jgv/10.1099/0022-1317-83-10-2523
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error