Full-length genome analysis of natural isolates of vesicular stomatitis virus (Indiana 1 serotype) from North, Central and South America Free

Abstract

Most studies on the molecular biology and functional analysis of vesicular stomatitis virus Indiana 1 serotype (VSV-IN1) are based on the only full-length genomic sequence currently deposited in GenBank. This sequence is a composite of several VSV-IN1 laboratory strains passaged extensively in tissue culture over the years and it is not certain that this sequence is representative of strains circulating in nature. We describe here the complete genomic sequence of three natural isolates, each representing a distinct genetic lineage and geographical origin: 98COE (North America), 94GUB (Central America) and 85CLB (South America). Genome structure and organization were conserved, with a 47 nucleotide 3′ leader, five viral genes – N, P, M, G and L – and a 59 nucleotide 5′ trailer. The most conserved gene was N, followed by M, L and G, with the most variable being P. Sequences containing the polyadenylation and transcription stop and start signals were completely conserved among all the viruses studied, but changes were found in the non-transcribed intergenic nucleotides, including the presence of a trinucleotide at the M–G junction of the South American lineage isolate. A 102–189 nucleotide insertion was present in the 5′ non-coding region of the G gene only in the viruses within a genetic lineage from northern Central America. These full-length genomic sequences should be useful in designing diagnostic probes and in the interpretation of functional genomic analyses using reverse genetics.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-10-2475
2002-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/10/0832475a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-10-2475&mimeType=html&fmt=ahah

References

  1. Barr J. N., Whelan S. P., Wertz G. W. 1997a; Cis-acting signals involved in termination of vesicular stomatitis virus mRNA synthesis include the conserved AUAC and the U7 signal for polyadenylation. Journal of Virology 71:8718–8725
    [Google Scholar]
  2. Barr J. N., Whelan S. P., Wertz G. W. 1997b; Role of the intergenic dinucleotide in vesicular stomatitis virus RNA transcription. Journal of Virology 71:1794–1801
    [Google Scholar]
  3. Bilsel P. A., Nichol S. T. 1990; Polymerase errors accumulating during natural evolution of the glycoprotein gene of vesicular stomatitis virus Indiana serotype isolates. Journal of Virology 64:4873–4883
    [Google Scholar]
  4. Coll J. M. 1995; The glycoprotein G of rhabdoviruses. Archives of Virology 140:827–851
    [Google Scholar]
  5. Das T., Pattnaik A. K., Takacs A. M., Li T., Hwang L. N., Banerjee A. K. 1997; Basic amino acid residues at the carboxy-terminal eleven amino acid region of the phosphoprotein (P) are required for transcription but not for replication of vesicular stomatitis virus genome RNA. Virology 238:103–114
    [Google Scholar]
  6. Desforges M., Charron J., Berard S., Beausoleil S., Stojdl D. F., Despars G., Laverdiere B., Bell J. C., Talbot P. J., Stanners C. P., Poliquin L. 2001; Different host-cell shutoff strategies related to the matrix protein lead to persistence of vesicular stomatitis virus mutants on fibroblast cells. Virus Research 76:87–102
    [Google Scholar]
  7. Domingo E., Escarmis C., Sevilla N., Moya A., Elena S. F., Quer J., Novella I. S., Holland J. J. 1996; Basic concepts in RNA virus evolution. FASEB Journal 10:859–864
    [Google Scholar]
  8. Feldhaus A. L., Lesnaw J. A. 1988; Nucleotide sequence of the L gene of vesicular stomatitis virus (New Jersey): identification of conserved domains in the New Jersey and Indiana L proteins. Virology 163:359–368
    [Google Scholar]
  9. Fredericksen B. L., Whitt M. A. 1998; Attenuation of recombinant vesicular stomatitis viruses encoding mutant glycoproteins demonstrate a critical role for maintaining a high pH threshold for membrane fusion in viral fitness. Virology 240:349–358
    [Google Scholar]
  10. Gallione C. J., Greene J. R., Iverson L. E., Rose J. K. 1981; Nucleotide sequences of the mRNAs encoding the vesicular stomatitis virus N and NS proteins. Journal of Virology 39:529–535
    [Google Scholar]
  11. Holland J. J., Spindler K., Horodyski F., Grabau E., Nichol S., Vande Pol S. 1982; Rapid evolution of RNA genomes. Science 215:1577–1585
    [Google Scholar]
  12. Iverson L. E., Rose J. K. 1982; Sequential synthesis of 5′-proximal vesicular stomatitis virus mRNA sequences. Journal of Virology 44:356–365
    [Google Scholar]
  13. Jayakar H. R., Murti K. G., Whitt M. A. 2000; Mutations in the PPPY motif of vesicular stomatitis virus matrix protein reduce virus budding by inhibiting a late step in virion release. Journal of Virology 74:9818–9827
    [Google Scholar]
  14. Johnson M. C., Simon B. E., Kim C. H., Leong J. A. 2000; Production of recombinant snakehead rhabdovirus: the NV protein is not required for viral replication. Journal of Virology 74:2343–2350
    [Google Scholar]
  15. Kolakofsky D., Pelet T., Garcin D., Hausmann S., Curran J., Roux L. 1998; Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. Journal of Virology 72:891–899
    [Google Scholar]
  16. Kopecky S. A., Willingham M. C., Lyles D. S. 2001; Matrix protein and another viral component contribute to induction of apoptosis in cells infected with vesicular stomatitis virus. Journal of Virology 75:12169–12181
    [Google Scholar]
  17. Kozak M. 1986; Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292
    [Google Scholar]
  18. Kretzschmar E., Peluso R., Schnell M. J., Whitt M. A., Rose J. K. 1996; Normal replication of vesicular stomatitis virus without C proteins. Virology 216:309–316
    [Google Scholar]
  19. Kurath G., Higman K. H., Bjorklund H. V. 1997; Distribution and variation of NV genes in fish rhabdoviruses. Journal of General Virology 78:113–117
    [Google Scholar]
  20. Luo L. H., Li Y., Snyder R. M., Wagner R. R. 1988; Point mutations in glycoprotein gene of vesicular stomatitis virus (New Jersey serotype) selected by resistance to neutralization by epitope-specific monoclonal antibodies. Virology 163:341–348
    [Google Scholar]
  21. Mandl C. W., Heinz F. X., Puchhammer-Stockl E., Kunz C. 1991; Sequencing the termini of capped viral RNA by 5′–3′ ligation and PCR. Biotechniques 10:485–486
    [Google Scholar]
  22. Pattnaik A. K., Ball L. A., LeGrone A., Wertz G. W. 1995; The termini of VSV DI particle RNAs are sufficient to signal RNA encapsidation, replication, and budding to generate infectious particles. Virology 206:760–764
    [Google Scholar]
  23. Pattnaik A. K., Hwang L., Li T., Englund N., Mathur M., Das T., Banerjee A. K. 1997; Phosphorylation within the amino-terminal acidic domain I of the phosphoprotein of vesicular stomatitis virus is required for transcription but not for replication. Journal of Virology 71:8167–8175
    [Google Scholar]
  24. Petersen J. M., Her L. S., Varvel V., Lund E., Dahlberg J. E. 2000; The matrix protein of vesicular stomatitis virus inhibits nucleocytoplasmic transport when it is in the nucleus and associated with nuclear pore complexes. Molecular and Cell Biology 20:8590–8601
    [Google Scholar]
  25. Poch O., Blumberg B. M., Bougueleret L., Tordo N. 1990; Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. Journal of General Virology 71:1153–1162
    [Google Scholar]
  26. Ravkov E. V., Smith J. S., Nichol S. T. 1995; Rabies virus glycoprotein gene contains a long 3′ noncoding region which lacks pseudogene properties. Virology 206:718–723
    [Google Scholar]
  27. Rodriguez L. L., Nichol S. T. 1999; Vesicular stomatitis viruses. In Encyclopedia of Virology pp 1910–1919 Edited by Webster R. G., Granoff A. London: Academic Press;
    [Google Scholar]
  28. Rodriguez L. L., Letchworth G. J., Spiropoulou C. F., Nichol S. T. 1993; Rapid detection of vesicular stomatitis virus New Jersey serotype in clinical samples by using polymerase chain reaction. Journal of Clinical Microbiology 31:2016–2020
    [Google Scholar]
  29. Rodriguez L. L., Maupin G. O., Ksiazek T. G., Rollin P. E., Khan A. S., Schwarz T. F., Lofts R. S., Smith J. F., Noor A. M., Peters C. J., Nichol S. T. 1997; Molecular investigation of a multisource outbreak of Crimean–Congo hemorrhagic fever in the United Arab Emirates. American Journal of Tropical Medicine and Hygiene 57:512–518
    [Google Scholar]
  30. Rodriguez L. L., Bunch T. A., Fraire M., Llewellyn Z. N. 2000; Re-emergence of vesicular stomatitis in the western United States is associated with distinct viral genetic lineages. Virology 271:171–181
    [Google Scholar]
  31. Shokralla S., He Y., Wanas E., Ghosh H. P. 1998; Mutations in a carboxy-terminal region of vesicular stomatitis virus glycoprotein G that affect membrane fusion activity. Virology 242:39–50
    [Google Scholar]
  32. Spiropoulou C. F., Nichol S. T. 1993; A small highly basic protein is encoded in overlapping frame within the P gene of vesicular stomatitis virus. Journal of Virology 67:3103–3110
    [Google Scholar]
  33. Stillman E. A., Whitt M. A. 1997; Mutational analyses of the intergenic dinucleotide and the transcriptional start sequence of vesicular stomatitis virus (VSV) define sequences required for efficient termination and initiation of VSV transcripts. Journal of Virology 71:2127–2137
    [Google Scholar]
  34. Takacs A. M., Barik S., Das T., Banerjee A. K. 1992; Phosphorylation of specific serine residues within the acidic domain of the phosphoprotein of vesicular stomatitis virus regulates transcription in vitro. Journal of Virology 66:5842–5848
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673–4680
    [Google Scholar]
  36. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24:4876–4882
    [Google Scholar]
  37. Wagner R. R., Rose J. K. 1996; Rhabdoviridae: the viruses and their replication. In Fields Virology pp 1121–1135 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  38. Whelan S. P., Wertz G. W. 1999; Regulation of RNA synthesis by the genomic termini of vesicular stomatitis virus: identification of distinct sequences essential for transcription but not replication. Journal of Virology 73:297–306
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-10-2475
Loading
/content/journal/jgv/10.1099/0022-1317-83-10-2475
Loading

Data & Media loading...

Most cited Most Cited RSS feed