1887

Abstract

Disassembly of alphavirus cores early in infection involves interaction of the core with 60S ribosomal subunits. This interaction might be subjected to regulatory processes. We have established an system of core disassembly in order to identify cellular proteins involved in the regulation of disassembly. No evidence for the existence of such proteins was found, but it became apparent that certain organic solvents and detergents or a high proton concentration (pH 6·0) stimulated core disassembly. Alphaviruses infect cells by an endosomal pathway. The low pH in the endosome activates a fusion activity of the viral surface protein E1 and leads to fusion of the viral membrane with the endosomal membrane, followed by release of the core into the cytoplasm. Since the presence of the E1 protein in the plasma membrane of infected cells leads to increased membrane permeability at low pH, our findings indicate that disassembly of alphavirus cores could be regulated by the proton concentration. We propose that the viral membrane proteins present in the endosomal membrane after fusion form a pore, which allows the flow of protons from the endosome into the cytoplasm. This process would generate a region of low pH in the cytoplasm at the correct time and place to allow the efficient disassembly of the incoming viral core by 60S subunits.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-10-2417
2002-10-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/10/0832417a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-10-2417&mimeType=html&fmt=ahah

References

  1. Ban N., Nissen P., Hansen J., Moore P. B., Steitz T. A. 2000; The complete atomic structure of the large ribosomal subunit at 2·4 Å resolution. Science 289:905–920
    [Google Scholar]
  2. Barton D. J., Morasco B. J., Flanegan J. B. 1996; Assays for poliovirus polymerase, 3D (Pol), and authentic RNA replication in HeLa S10 extracts. Methods in Enzymology 275:35–57
    [Google Scholar]
  3. Boege U., Wengler G., Wengler G., Wittmann-Liebold B. 1980; Partial amino acid sequences of Sindbis and Semliki Forest virus-specific core proteins. Virology 103:178–190
    [Google Scholar]
  4. Bron R., Wahlberg J. M., Garoff H., Wilschut J. 1993; Membrane fusion of Semliki Forest virus in a model system: correlation between fusion kinetics and structural changes in the envelope glycoprotein. EMBO Journal 12:693–701
    [Google Scholar]
  5. Choi H.-K., Tong L., Minor W., Dumas P., Boege U., Rossmann M. G., Wengler G. 1991; Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion. Nature 354:37–43
    [Google Scholar]
  6. Dick M., Barth B. U., Kempf C. 1996; The E1 protein is mandatory for pore formation by Semliki Forest virus spikes. Virology 220:204–207
    [Google Scholar]
  7. Hofmann K., Bucher P., Falquet L., Bairoch A. 1999; The PROSITE database, its status in 1999. Nucleic Acids Research 27:215–219
    [Google Scholar]
  8. Justmann J., Klimjack M. R., Kielian M. 1993; Role of spike protein conformational changes in fusion of Semliki Forest virus. Journal of Virology 67:7597–7607
    [Google Scholar]
  9. Lanzrein M., Weingart R., Kempf C. 1993; pH-dependent pore formation in Semliki Forest virus-infected Aedes albopictus cells. Virology 193:296–302
    [Google Scholar]
  10. Marsh M., Helenius A. 1989; Virus entry into animal cells. Advances in Virus Research 36:107–151
    [Google Scholar]
  11. Nyfeler S., Senn K., Kempf C. 2001; Expression of Semliki Forest virus E1 protein in Escherichia coli : low pH-induced pore formation. Journal of Biological Chemistry 276:15453–15457
    [Google Scholar]
  12. Paredes A. M., Simon M. L., Brown D. T. 1992; The mass of the Sindbis virus nucleocapsid suggests it has T=4 icosahedral symmetry. Virology 187:329–332
    [Google Scholar]
  13. Powers A. M., Brault A. C., Shirako Y., Strauss E. G., Kang W., Strauss J. H., Weaver S. C. 2001; Evolutionary relationships and systematics of the alphaviruses. Journal of Virology 75:10118–10131
    [Google Scholar]
  14. Schlesinger S., Schlesinger M. J. 2001; Togaviridae : the viruses and their replication. In Fields Virology, 4th edn. pp 895–916 Edited by Knipe D. M, Howley P. M. Lippincott Williams & Wilkins;
    [Google Scholar]
  15. Simons K., Garoff H. 1980; The budding mechanisms of enveloped animal viruses. Journal of General Virology 50:1–21
    [Google Scholar]
  16. Singh I. R., Helenius A. 1992; Role of ribosomes in Semliki Forest virus nucleocapsid uncoating. Journal of Virology 66:7049–7058
    [Google Scholar]
  17. Singh I. R., Suomalainen M., Varadarajan S., Garoff H., Helenius A. 1997; Multiple mechanisms for the inhibition of entry and uncoating of superinfecting Semliki Forest virus. Virology 231:59–71
    [Google Scholar]
  18. Söderlund H., Kääriäinen L., von Bondsdorff C.-H., Weckström P. 1972; Properties of Semliki Forest virus nucleocapsid. II. An irreversible contraction by acid pH. Virology 47:753–760
    [Google Scholar]
  19. Söderlund H., von Bondsdorff C.-H., Ulmanen I. 1979; Comparison of the structural properties of Sindbis and Semliki Forest virus nucleocapsids. Journal of General Virology 45:15–26
    [Google Scholar]
  20. Strauss J. H., Strauss E. G. 1994; The alphaviruses: gene expression, replication, evolution. Microbiological Reviews 58:491–562
    [Google Scholar]
  21. Ulmanen I., Söderlund H., Kääriäinen L. 1976; Semliki Forest virus capsid associates with the 60S ribosomal subunit in infected cells. Journal of Virology 20:203–210
    [Google Scholar]
  22. Ulmanen I., Söderlund H., Kääriäinen L. 1979; Role of protein synthesis in the assembly of Semliki Forest virus nucleocapsid. Virology 99:265–276
    [Google Scholar]
  23. Van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. (editors) 2000; Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses San Diego: Academic Press;
    [Google Scholar]
  24. Wahlberg J. M., Bron R., Wilschut J., Garoff H. 1992; Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein. Journal of Virology 66:7309–7318
    [Google Scholar]
  25. Wengler G. 1987; The mode of assembly of alphavirus cores implies a mechanism for the disassembly of the cores in the early stages of infection. Archives of Virology 94:1–14
    [Google Scholar]
  26. Wengler G., Wengler G. 1984; Identification of a transfer of viral core protein to cellular ribosomes during the early stages of alphavirus infection. Virology 134:435–442
    [Google Scholar]
  27. Wengler G., Wengler G., Boege U., Wahn K. 1984; Establishment and analysis of a system which allows assembly and disassembly of alphavirus core-like particles under physiological conditions in vitro. Virology 132:401–410
    [Google Scholar]
  28. Wengler G., Würkner D., Wengler G. 1992; Identification of a sequence element in the alphavirus core protein which mediates interaction of cores with ribosomes and the disassembly of cores. Virology 191:880–888
    [Google Scholar]
  29. Wengler G., Gros C., Wengler G. 1996; Analyses of the role of structural changes in the regulation of uncoating and assembly of alphavirus cores. Virology 222:123–132
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-83-10-2417
Loading
/content/journal/jgv/10.1099/0022-1317-83-10-2417
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error