1887

Abstract

Herpesviruses and poxviruses are known to encode the DNA repair enzyme uracil-DNA glycosylase (UNG), an enzyme involved in the base excision repair pathway that specifically removes the RNA base uracil from DNA, while at least one retrovirus (human immunodeficiency virus type 1) packages cellular UNG into virus particles. In these instances, UNG is implicated as being important in virus replication. However, a clear understanding of the role(s) of UNG in virus replication remains elusive. Herpesviruses, poxviruses and some retroviruses encode dUTPase, an enzyme that can minimize the misincorporation of uracil into DNA. The encoding of dUTPase by these viruses also implies their importance in virus replication. An understanding at the molecular level of how these viruses replicate in non-dividing cells should provide clues to the biological relevance of UNG and dUTPase function in virus replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-10-2339
2002-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/10/0832339a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-10-2339&mimeType=html&fmt=ahah

References

  1. Bachand F., Yao X.-J., Hrimech M., Rougeau N., Cohen E. A. 1999; Incorporation of Vpr into human immunodeficiency virus type 1 requires a direct interaction with the p6 domain of the p55 gag precursor. Journal of Biological Chemistry 274:9083–9091
    [Google Scholar]
  2. Baldo A. M., McClure M. A. 1999; Evolution and horizontal transfer of dUTPase-encoding genes in viruses and their hosts. Journal of Virology 73:7710–7721
    [Google Scholar]
  3. Bouhamdan M., Benichou S., Rey F., Navarro J.-M., Agostini I., Spire B., Camonis J., Slupphaug G., Vigne R., Benarous R., Sire J. 1996; Human immunodeficiency virus type 1 Vpr protein binds to the uracil DNA glycosylase DNA repair enzyme. Journal of Virology 70:697–704
    [Google Scholar]
  4. Bouhamdan M., Xue Y. N., Baudat Y., Hu B., Sire J., Pomerantz R. J., Duan L.-X. 1998; Diversity of HIV-1 Vpr interactions involves usage of the WXXF motif of host cell proteins. Journal of Biological Chemistry 273:8009–8016
    [Google Scholar]
  5. Caradonna S., Worrad D., Lirette R. 1987; Isolation of a herpes simplex virus cDNA encoding the DNA repair enzyme uracil-DNA glycosylase. Journal of Virology 61:3040–3047
    [Google Scholar]
  6. Cottone R., Buttner M., Bauer B., Henkel M., Hettich E., Rziha H. J. 1998; Analysis of genomic rearrangement and subsequent gene deletion of the attenuated Orf virus strain D1701. Virus Research 56:53–67
    [Google Scholar]
  7. Cottone R., Buttner M., McInnes C. J., Wood A. R., Rziha H. J. 2002; Orf virus encodes a functional dUTPase gene. Journal of General Virology 83:1043–1048
    [Google Scholar]
  8. Courcelle C. T., Courcelle J., Prichard M. N., Mocarski E. S. 2001; Requirement for uracil-DNA glycosylase during the transition to late-phase cytomegalovirus DNA replication. Journal of Virology 75:7592–7601
    [Google Scholar]
  9. Dixon L. K., Twigg S. R., Baylis S. A., Vydelingum S., Bristow C., Hammond J. M., Smith G. L. 1994; Nucleotide sequence of a 55 kbp region from the right end of the genome of a pathogenic African swine fever virus isolate (Malawi LIL20/1). Journal of General Virology 75:1655–1684
    [Google Scholar]
  10. Elder J. H., Lerner D. L., Hasselkus-Light C. S., Fontenot D. J., Hunter E., Luciw P. A., Montelaro R. C., Phillips T. R. 1992; Distinct subsets of retroviruses encode dUTPase. Journal of Virology 66:1791–1794
    [Google Scholar]
  11. Ellison K. S., Peng W., McFadden G. 1996; Mutations in active-site residues of the uracil-DNA glycosylase encoded by vaccinia virus are incompatible with virus viability. Journal of Virology 70:7965–7973
    [Google Scholar]
  12. Fleming S. B., Lyttle D. J., Sullivan J. T., Mercer A. A., Robinson A. J. 1995; Genomic analysis of a transposition-deletion variant of orf virus reveals a 3·3 kbp region of non-essential DNA. Journal of General Virology 76:2969–2978
    [Google Scholar]
  13. Friedberg E. C., Walker G. C., Siede W. 1995 In DNA Repair and Mutagenesis pp. 698 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. He J., Choe S., Walker R., Di Marzio P., Morgan D. O., Landau N. R. 1995; Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. Journal of Virology 69:6705–6711
    [Google Scholar]
  15. Heinzinger N. K., Bukrinsky M. I., Haggerty S. A., Ragland A. M., Kewalramani V., Lee M.-A., Gendelman H. E., Ratner L., Stevenson M., Emerman M. 1994; The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proceedings of the National Academy of Sciences, USA 91:7311–7315
    [Google Scholar]
  16. Jowett J. B. M., Planelles V., Poon B., Shah N. P., Chen M.-L., Chen I. S. Y. 1995; The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2+M phase of the cell cycle. Journal of Virology 69:6304–6313
    [Google Scholar]
  17. Lerner D. L., Wagaman P. C., Phillips T. R., Prospero-Garcia O., Henriksen S. J., Fox H. S., Bloom F. E., Elder J. H. 1995; Increased mutation frequency of feline immunodeficiency virus lacking functional deoxyuridine-triphosphatase. Proceedings of the National Academy of Sciences, USA 92:7480–7484
    [Google Scholar]
  18. McGeoch D. J. 1990; Protein sequence comparisons show that the ‘pseudoproteases’ encoded by poxviruses and certain retroviruses belong to the deoxyuridine triphosphate family. Nucleic Acids Research 18:4105–4110
    [Google Scholar]
  19. Mansky L. M. 1996; The mutation rate of human immunodeficiency virus type 1 is influenced by the vpr gene. Virology 222:391–400
    [Google Scholar]
  20. Mansky L. M., Preveral S., Selig L., Benarous R., Benichou S. 2000; The interaction of Vpr with uracil DNA glycosylase modulates the human immunodeficiency virus type 1 in vivo mutation rate. Journal of Virology 74:7039–7047
    [Google Scholar]
  21. Mansky L. M., Preveral S., Le Rouzic E., Bernard L. C., Selig L., Depienne C., Benarous R., Benichou S. 2001; Interaction of human immunodeficiency virus type 1 Vpr with the HHR23A DNA repair protein does not correlate with multiple biological functions of Vpr. Virology 282:176–185
    [Google Scholar]
  22. Miller R. J., Cairns J. S., Bridges S., Sarver N. 2000; Human immunodeficiency virus and AIDS: insights from animal lentiviruses. Journal of Virology 74:7187–7195
    [Google Scholar]
  23. Millns A. K., Carpenter M. S., DeLange A. M. 1994; The vaccinia virus-encoded uracil DNA glycosylase has an essential role in viral DNA replication. Virology 198:504–513
    [Google Scholar]
  24. Mol C. D., Arvai A. S., Sanderson R. J., Slupphaug G., Kavli B., Krokan H. E., Mosbaugh D. W., Tainer J. A. 1995; Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell 82:701–708
    [Google Scholar]
  25. Mullaney J., Moss H. W., McGeoch D. J. 1989; Gene UL2 of herpes simplex virus type 1 encodes a uracil-DNA glycosylase. Journal of General Virology 70:449–454
    [Google Scholar]
  26. Nilsen H., Rosewell I., Robins P., Skjelbred C. F., Andersen S., Slupphaug G., Daly G., Krokan H. E., Lindahl T., Barnes D. E. 2000; Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication. Molecular Cell 5:1059–1065
    [Google Scholar]
  27. Oliveros M., Garcia-Escudero R., Alejo A., Vinuela E., Salas M. L., Salas J. 1999; African swine fever virus dUTPase is a highly specific enzyme required for efficient replication in swine macrophages. Journal of Virology 73:8934–8943
    [Google Scholar]
  28. Preston V. G., Fisher F. B. 1984; Identification of the herpes simplex virus type 1 gene encoding the dUTPase. Virology 138:58–68
    [Google Scholar]
  29. Prichard M. N., Duke G. M., Mocarski E. S. 1996; Human cytomegalovirus uracil DNA glycosylase is required for the normal temporal regulation of both DNA synthesis and viral replication. Journal of Virology 70:3018–3025
    [Google Scholar]
  30. Pyles R. B., Thompson R. L. 1994a; Mutations in accessory DNA replicating functions alter the relative mutation frequency of herpes simplex virus type 1 strains in cultured murine cells. Journal of Virology 68:4514–4524
    [Google Scholar]
  31. Pyles R. B., Thompson R. L. 1994b; Evidence that the herpes simplex virus type 1 uracil DNA glycosylase is required for efficient viral replication and latency in the murine nervous system. Journal of Virology 68:4963–4972
    [Google Scholar]
  32. Pyles R. B., Sawtell N. M., Thompson R. L. 1992; Herpes simplex virus type 1 dUTPase mutants are attenuated for neurovirulence, neuroinvasiveness, and reactivation from latency. Journal of Virology 66:6706–6713
    [Google Scholar]
  33. Reddy S. M., Williams M., Cohen J. I. 1998; Expression of a uracil DNA glycosylase (UNG) inhibitor in mammalian cells: varicella-zoster virus can replicate in vitro in the absence of detectable UNG activity. Virology 251:393–401
    [Google Scholar]
  34. Rogel M. E., Wu L. I., Emerman M. 1995; The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection. Journal of Virology 69:882–888
    [Google Scholar]
  35. Selig L., Benichou S., Rogel M. E., Wu L. I., Vodicka M. A., Sire J., Benarous R., Emerman M. 1997; Uracil DNA glycosylase specifically interacts with Vpr of both human immunodeficiency virus type 1 and simian immunodeficiency virus of sooty mangabeys, but binding does not correlate with cell cycle arrest. Journal of Virology 71:4842–4846
    [Google Scholar]
  36. Selig L., Pages J.-C., Tanchou V., Preveral S., Berlioz-Torrent C., Liu L. X., Erdtmann L., Darlix J.-L., Benarous R., Benichou S. 1999; Interaction with the p6 domain of the Gag precursor mediates incorporation into virions of Vpr and Vpx proteins from primate lentiviruses. Journal of Virology 73:592–600
    [Google Scholar]
  37. Stuart D. T., Upton C., Higman M. A., Niles E. G., McFadden G. 1993; A poxvirus-encoded uracil DNA glycosylase is essential for virus viability. Journal of Virology 67:2503–2512
    [Google Scholar]
  38. Turelli P., Guiguen F., Mornex J.-F., Vigne R., Querat G. 1997; dUTPase-minus caprine arthritis–encephalitis virus is attenuated for pathogenesis and accumulates G-to-A substitutions. Journal of Virology 71:4522–4530
    [Google Scholar]
  39. Upton C., Stuart D. T., McFadden G. 1993; Identification of a poxvirus gene encoding a uracil DNA glycosylase. Proceedings of the National Academy of Sciences, USA 90:4518–4522
    [Google Scholar]
  40. van der Spek P. J., Visser C. E., Hanaoka F., Smit B., Hagemeijer A., Bootsma D., Hoeijmakers J. H. 1996; Cloning, comparative mapping, and RNA expression of the mouse homologues of the Saccharomyces cerevisiae nucleotide excision repair gene RAD23. Genomics 31:20–27
    [Google Scholar]
  41. Willetts K. E., Rey F., Agostini I., Navarro J.-M., Baudat Y., Vigne R., Sire J. 1999; DNA repair enzyme uracil DNA glycosylase is specifically incorporated into human immunodeficiency virus type 1 viral particles through a Vpr-independent mechanism. Journal of Virology 73:1682–1688
    [Google Scholar]
  42. Yanez R. J., Rodriguez J. M., Nogal M. L., Yuste L., Enriquez C., Rodriguez J. F., Vinuela E. 1995; Analysis of the complete nucleotide sequence of African swine fever virus. Virology 208:249–278
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-10-2339
Loading
/content/journal/jgv/10.1099/0022-1317-83-10-2339
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error