1887

Abstract

Many C- and D-type retroviruses are known to cause a broad spectrum of malignant diseases in animals. Certain genome regions of these animal retroviruses are highly conserved between different animal species. It should be possible to detect new members of the retrovirus family with consensus PCR primers derived from these conserved sequence motifs. The consensus PCR primers developed in this study are generic enough to detect nearly all known oncogenic mammalian and avian exogenous C- and D-type retroviruses but do not amplify human endogenous retroviral sequences. In contrast to previous investigations, the present study involved highly stringent PCR conditions and truly generic PCR primers. Forty-four samples from patients with various immunophenotyped malignant diseases (acute and chronic T-/B-cell lymphocytic leukaemias, acute myeloid leukaemias, T-/B-cell lymphomas, chronic myeloproliferative disorders) and three cell lines (Hodgkin’s lymphoma, Burkitt’s lymphoma) have thus far been investigated using these PCR primers. The fact that no retroviruses have been found argues against an involvement of known animal oncoretroviruses or related hitherto undetected human retroviruses in the aetiopathogenesis of these diseases. The retrovirus detection system developed here may be used to confirm suspected retroviral involvement in other (malignant or nonmalignant) human diseases as well as to identify new animal retroviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-9-2205
2001-09-01
2020-04-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/9/0822205a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-9-2205&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research25:3389–3402
    [Google Scholar]
  2. Barat C., Rassart E.. 1998; Nuclear factors that bind to the U3 region of two murine myeloid leukemia-inducing retroviruses. Cas-Br-E and Graffi. Virology252:82–95
    [Google Scholar]
  3. Bene M. C., Castoldi G., Knapp W., Ludwig W. D., Matutes E., Orfao A., van’t Veer M. B.. 1995; Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia9:1783–1786
    [Google Scholar]
  4. Bennett J. M., Catovsky D., Daniel M. T., Flandrin G., Galton D. A., Gralnick H. R., Sultan C.. 1985; Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French–American–British Cooperative Group. Annals of Internal Medicine103:620–625
    [Google Scholar]
  5. Bohannon R. C., Donehower L. A., Ford R. J.. 1991; Isolation of a type D retrovirus from B-cell lymphomas of a patient with AIDS. Journal of Virology65:5663–5672
    [Google Scholar]
  6. Chopra H. C., Mason M. M.. 1970; A new virus in a spontaneous mammary tumor of a rhesus monkey. Cancer Research30:2081–2086
    [Google Scholar]
  7. Chou Q., Russell M., Birch D. E., Raymond J., Bloch W.. 1992; Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucleic Acids Research20:1717–1723
    [Google Scholar]
  8. Coffin J. M.. 1992; Structure and classification of retroviruses. In The Retroviridae pp19–50 Edited by Levy J. A.. New York: Plenum Press;
    [Google Scholar]
  9. Cousens C., Minguijon E., Dalziel R. G., Ortin A., Garcia M., Park J., Gonzalez L., Sharp J. M., de las Heras M.. 1999; Complete sequence of enzootic nasal tumor virus, a retrovirus associated with transmissible intranasal tumors of sheep. Journal of Virology73:3986–3993
    [Google Scholar]
  10. Donehower L. A., Bohannon R. C., Ford R. J., Gibbs R. A.. 1990; The use of primers from highly conserved pol regions to identify uncharacterized retroviruses by the polymerase chain reaction. Journal of Virological Methods28:33–46
    [Google Scholar]
  11. Dube S., Bachman S., Spicer T., Love J., Choi D., Esteban E., Ferrer J. F., Poiesz B. J.. 1997; Degenerate and specific PCR assays for the detection of bovine leukaemia virus and primate T cell leukaemia/lymphoma virus pol DNA and RNA: phylogenetic comparisons of amplified sequences from cattle and primates from around the world. Journal of General Virology78:1389–1398
    [Google Scholar]
  12. Fan H.. 1997; Leukemogenesis by Moloney murine leukemia virus: a multistep process. Trends in Microbiology5:74–82
    [Google Scholar]
  13. Gessain A., de Thé G.. 1996; Geographic and molecular epidemiology of primate T lymphotropic retroviruses: HTLV-I, HTLV-II, STLV-I, STLV-PP, and PTLV-L. Advances in Virus Research47:377–426
    [Google Scholar]
  14. Harris N. L.. 1997; Principles of the revised European–American Lymphoma Classification (from the International Lymphoma Study Group. Annals of Oncology8:Suppl 211–16
    [Google Scholar]
  15. Heidecker G., Lerche N. W., Lowenstine L. J., Lackner A. A., Osborn K. G., Gardner M. B., Marx P. A.. 1987; Induction of simian acquired immune deficiency syndrome (SAIDS) with a molecular clone of a type D SAIDS retrovirus. Journal of Virology61:3066–3071
    [Google Scholar]
  16. Hunter E., Casey J., Hahn B., Hayami M., Korber B., Kurth R., Neil J., Rethwilm A., Sonigo P., Stoye J.. 2000; Family Retroviridae . In Virus Taxonomy . Seventh Report of the International Committee on Taxonomy of Viruses. pp369–387 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. San Diego: Academic Press;
  17. Johnson E. S.. 1994; Poultry oncogenic retroviruses and humans. Cancer Detection and Prevention18:9–30
    [Google Scholar]
  18. Levy J. A.. 1999; Xenotropism: the elusive viral receptor finally uncovered. Proceedings of the National Academy of Sciences, USA96:802–804
    [Google Scholar]
  19. Li M. D., Lemke T. D., Bronson D. L., Faras A. J.. 1996; Synthesis and analysis of a 640-bp pol region of novel human endogenous retroviral sequences and their evolutionary relationships. Virology217:1–10
    [Google Scholar]
  20. Ludwig W. D., Raghavachar A., Thiel E.. 1994; Immunophenotypic classification of acute lymphoblastic leukaemia. Baillieres Clinical Haematology7:235–262
    [Google Scholar]
  21. Marafioti T., Hummel M., Foss H.-D., Laumen H., Korbjuhn P., Anagnostopoulos I., Lammert H., Demel G., Theil J., Wirth T., Stein H.. 2000; Hodgkin and Reed–Sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood95:1443–1450
    [Google Scholar]
  22. Mayer J., Sauter M., Racz A., Scherer D., Mueller-Lantzsch N., Meese E.. 1999; An almost-intact human endogenous retrovirus K on human chromosome 7. Nature Genetics21:257–258
    [Google Scholar]
  23. Medstrand P., Blomberg J.. 1993; Characterization of novel reverse transcriptase encoding human endogenous retroviral sequences similar to type A and type B retroviruses: differential transcription in normal human tissues. Journal of Virology67:6778–6787
    [Google Scholar]
  24. Miller A. D., Buttimore C.. 1986; Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Molecular and Cellular Biology6:2895–2902
    [Google Scholar]
  25. Miyoshi I., Kubonishi I., Yoshimoto S., Shiraishi Y.. 1981; A T-cell line derived from normal human cord leukocytes by co-culturing with human leukemic T-cells. Japanese Journal of Cancer Research (GANN)72:978–981
    [Google Scholar]
  26. Morgan R. A., Dornsife R. E., Anderson W. F., Hoover E. A.. 1993; In vitro infection of human bone marrow by feline leukemia viruses. Virology193:439–442
    [Google Scholar]
  27. Palmarini M., Fan H., Sharp J. M.. 1997; Sheep pulmonary adenomatosis: a unique model of retrovirus-associated lung cancer. Trends in Microbiology5:478–483
    [Google Scholar]
  28. Palmarini M., Hallwirth C., York D., Murgia C., de Oliveira T., Spencer T., Fan H.. 2000; Molecular cloning and functional analysis of three type D endogenous retroviruses of sheep reveal a different cell tropism from that of the highly related exogenous Jaagsiekte retrovirus. Journal of Virology74:8065–8076
    [Google Scholar]
  29. Power M. D., Marx P. A., Bryant M. L., Gardner M. B., Barr P. J., Luciw P. A.. 1986; Nucleotide sequence of SRV-1, a type D simian acquired immune deficiency syndrome retrovirus. Science231:1567–1572
    [Google Scholar]
  30. Rai S. K., DeMartini J. C., Miller A. D.. 2000; Retrovirus vectors bearing jaagsiekte sheep retrovirus Env transduce human cells by using a new receptor localized to chromosome 3p21. 3. Journal of Virology74:4698–4704
    [Google Scholar]
  31. Sagata N., Yasunaga T., Tsuzuku-Kawamura J., Ohishi K., Ogawa Y., Ikawa Y.. 1985; Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses. Proceedings of the National Academy of Sciences, USA82:677–681
    [Google Scholar]
  32. Shih A., Misra R., Rush M. G.. 1989; Detection of multiple, novel reverse transcriptase coding sequences in human nucleic acids: relation to primate retroviruses. Journal of Virology63:64–75
    [Google Scholar]
  33. Skerra A.. 1992; Phosphorothioate primers improve the amplification of DNA sequences by DNA polymerases with proofreading activity. Nucleic Acids Research20:3551–3554
    [Google Scholar]
  34. Sommerfelt M. A.. 1999; Retrovirus receptors. Journal of General Virology80:3049–3064
    [Google Scholar]
  35. Spiegelman S., Axel R., Baxt W., Kufe D., Schlom J.. 1974; Human cancer and animal viral oncology. Cancer34:suppl.1406–1420
    [Google Scholar]
  36. Takeuchi Y., Vile R. G., Simpson G., O’Hara B., Collins M. K., Weiss R. A.. 1992; Feline leukemia virus subgroup B uses the same cell surface receptor as gibbon ape leukemia virus. Journal of Virology66:1219–1222
    [Google Scholar]
  37. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research25:4876–4882
    [Google Scholar]
  38. Tönjes R. R., Czauderna F., Kurth R.. 1999; Genome-wide screening, cloning, chromosomal assignment, and expression of full-length human endogenous retrovirus type K. Journal of Virology73:9187–9195
    [Google Scholar]
  39. Urnovitz H. B., Murphy W. H.. 1996; Human endogenous retroviruses: nature, occurrence, and clinical implications in human disease. Clinical Microbiology Reviews9:72–99
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-9-2205
Loading
/content/journal/jgv/10.1099/0022-1317-82-9-2205
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error