A measles virus glycoprotein-derived human CTL epitope is abundantly presented via the proteasomal-dependent MHC class I processing pathway Free

Abstract

Peptides derived from measles virus (MV) are presented by MHC class I molecules at widely divergent levels, but it is currently unknown how functional these levels are. Here, for the first time, we studied the natural occurrence and the underlying processing events of a known MV CTL epitope derived from the fusion glycoprotein (MV-F) and restricted via HLA-B*2705. Using MHC–peptide elution of MV-infected cells followed by sensitive mass spectrometry we determined the naturally occurring sequence to be RRYPDAVYL, corresponding to MV-F. Its level of expression was enumerated at approximately 1500 copies per cell, which is considered to be abundant, but lies within the range described for other viral CTL epitopes in human MHC class I molecules. We found that processing of the MV-F epitope occurs primarily via the classic MHC class I loading pathway, since presentation to CTL depends on both the transporter associated with antigen presentation (TAP) and the proteasome. Even though it is cotranslationally inserted into the ER, a major part of MV-F is located in the cytosol, where it accumulates rapidly in the presence of proteasome inhibitors. We therefore conclude that a substantial cytosolic turnover of MV-F, together with some excellent processing features of MV-F precursors, such as precise C-terminal excision by proteasomes, efficient TAP transport and strong HLA binding, dictate the abundant functional expression of the MV-F CTL epitope in HLA-B*2705 at the surface of MV-infected cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-9-2131
2001-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/9/0822131a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-9-2131&mimeType=html&fmt=ahah

References

  1. Brooks J. M., Murray R. J., Thomas W. A., Kurilla M. G., Rickinson A. B. 1993; Different HLA-B27 subtypes present the same immunodominant Epstein–Barr virus peptide. Journal of Experimental Medicine 178:879–887
    [Google Scholar]
  2. Craiu A., Akopian T., Goldberg A., Rock K. L. 1997; Two distinct proteolytic processes in the generation of a major histocompatibility complex class I-presented peptide. Proceedings of the National Academy of Sciences, USA 94:10850–10855
    [Google Scholar]
  3. Crotzer V. L., Christian R. E., Brooks J. M., Shabanowitz J., Settlage R. E., Marto J. A., White F. M., Rickinson A. B., Hunt D. F., Engelhard V. H. 2000; Immunodominance among EBV-derived epitopes restricted by HLA-B27 does not correlate with epitope abundance in EBV-transformed B-lymphoblastoid cell lines. Journal of Immunology 164:6120–6129
    [Google Scholar]
  4. Drouet M., Aussel L., Drenou B., Fauchet R. 1995; Quantification and molecular analysis of plasmatic HLA-BCw molecules with a locus B and Cw HLA specific mAb (B1.23.2 mAb. European Journal of Immunogenetics 22:363–370
    [Google Scholar]
  5. Eisenlohr L. C., Bacik I., Bennink J. R., Bernstein K., Yewdell J. W. 1992; Expression of a membrane protease enhances presentation of endogenous antigens to MHC class I-restricted T lymphocytes. Cell 71:963–972
    [Google Scholar]
  6. Ferris R. L., Buck C., Hammond S. A., Woods A. S., Cotter R. J., Takiguchi M., Igarashi Y., Ichikawa Y., Siliciano R. F. 1996; Class I-restricted presentation of an HIV-1 gp41 epitope containing an N-linked glycosylation site. Implications for the mechanism of processing of viral envelope proteins. Journal of Immunology 156:834–840
    [Google Scholar]
  7. Fu T. M., Mylin L. M., Schell T. D., Bacik I., Russ G., Yewdell J. W., Bennink J. R., Tevethia S. S. 1998; An endoplasmic reticulum-targeting signal sequence enhances the immunogenicity of an immunorecessive simian virus 40 large T antigen cytotoxic T-lymphocyte epitope. Journal of Virology 72:1469–1481
    [Google Scholar]
  8. Grommé M., UytdeHaag F. G., Janssen H., Calafat J., van Binnendijk R. S., Kenter M. J., Tulp A., Verwoerd D., Neefjes J. 1999; Recycling MHC class I molecules and endosomal peptide loading. Proceedings of the National Academy of Sciences, USA 96:10326–10331
    [Google Scholar]
  9. Hammond S. A., Johnson R. P., Kalams S. A., Walker B. D., Takiguchi M., Safrit J. T., Koup R. A., Siliciano R. F. 1995; An epitope-selective, transporter associated with antigen presentation (TAP)-1/2-independent pathway and a more general TAP-1/2-dependent antigen-processing pathway allow recognition of the HIV-1 envelope glycoprotein by CD8+ CTL. Journal of Immunology 154:6140–6156
    [Google Scholar]
  10. Hombach J., Pircher H., Tonegawa S., Zinkernagel R. M. 1995; Strictly transporter of antigen presentation (TAP)-dependent presentation of an immunodominant cytotoxic T lymphocyte epitope in the signal sequence of a virus protein. Journal of Experimental Medicine 182:1615–1619
    [Google Scholar]
  11. Huet S., Nixon D. F., Rothbard J. B., Townsend A., Ellis S. A., McMichael A. J. 1990; Structural homologies between two HLA B27-restricted peptides suggest residues important for interaction with HLA B27. International Immunology 2:311–316
    [Google Scholar]
  12. Jaye A., Magnusen A. F., Sadiq A. D., Corrah T., Whittle H. C. 1998; Ex vivo analysis of cytotoxic T lymphocytes to measles antigens during infection and after vaccination in Gambian children. Journal of Clinical Investigation 102:1969–1977
    [Google Scholar]
  13. Kessler J. H., Beekman N. J., Bres-Vloermans S. A., Verdijk P., van Veelen P. A., Kloosterman-Joosten A. M., Vissers D. C. J., ten Bosch G. J. A., Kester M. G. D., Sijts A., Drijfhout J. W., Ossendorp F., Offringa R., Melief C. J. M. 2000; Efficient identification of novel HLA-A*0201 presented CTL epitopes in the widely expressed tumor antigen PRAME by proteasome mediated digestion analysis. Journal of Experimental Medicine 193:73–88
    [Google Scholar]
  14. Levitsky V., Zhang Q. J., Levitskaya J., Masucci M. G. 1996; The life span of major histocompatibility complex–peptide complexes influences the efficiency of presentation and immunogenicity of two class I-restricted cytotoxic T lymphocyte epitopes in the Epstein–Barr virus nuclear antigen 4. Journal of Experimental Medicine 183:915–926
    [Google Scholar]
  15. Lucchiari-Hartz M., van Endert P. M., Lauvau G., Maier R., Meyerhans A., Mann D., Eichmann K., Niedermann G. 2000; Cytotoxic T lymphocyte epitopes of HIV-1 Nef: generation of multiple definitive major histocompatibility complex class I ligands by proteasomes. Journal of Experimental Medicine 191:239–252
    [Google Scholar]
  16. Luckey C. J., King G. M., Marto J. A., Venketeswaran S., Maier B. F., Crotzer V. L., Colella T. A., Shabanowitz J., Hunt D. F., Engelhard V. H. 1998; Proteasomes can either generate or destroy MHC class I epitopes: evidence for nonproteasomal epitope generation in the cytosol. Journal of Immunology 161:112–121
    [Google Scholar]
  17. Martinez-Kinader B., Lipford G. B., Wagner H., Heeg K. 1995; Sensitization of MHC class I-restricted T cells to exogenous proteins: evidence for an alternative class I-restricted antigen presentation pathway. Immunology 86:287–295
    [Google Scholar]
  18. Mosse C. A., Meadows L., Luckey C. J., Kittlesen D. J., Huczko E. L., Slingluff C. L., Shabanowitz J., Hunt D. F., Engelhard V. H. 1998; The class I antigen-processing pathway for the membrane protein tyrosinase involves translation in the endoplasmic reticulum and processing in the cytosol. Journal of Experimental Medicine 187:37–48
    [Google Scholar]
  19. Nanan R., Carstens C., Kreth H. W. 1995; Demonstration of virus-specific CD8+ memory T cells in measles-seropositive individuals by in vitro peptide stimulation. Clinical and Experimental Immunology 102:40–45
    [Google Scholar]
  20. Neisig A., Roelse J., Sijts A. J., Ossendorp F., Feltkamp M. C., Kast W. M., Melief C. J., Neefjes J. J. 1995; Major differences in transporter associated with antigen presentation (TAP)-dependent translocation of MHC class I-presentable peptides and the effect on flanking sequences. Journal of Immunology 154:1273–1279
    [Google Scholar]
  21. Neumeister C., Nanan R., Cornu T. I., Lüder C. G. K., ter Meulen V., Naim H., Niewiesk S. 2001; Measles virus and canine distemper virus target proteins into a TAP-independent MHC class I-restricted antigen-processing pathway. Journal of General Virology 82:441–447
    [Google Scholar]
  22. Niedermann G., Butz S., Ihlenfeldt H. G., Grimm R., Lucchiari M., Hoschutzky H., Jung G., Maier B., Eichmann K. 1995; Contribution of proteasome-mediated proteolysis to the hierarchy of epitopes presented by major histocompatibility complex class I molecules. Immunity 2:289–299
    [Google Scholar]
  23. Ossendorp F., Eggers M., Neisig A., Ruppert T., Groettrup M., Sijts A., Mengede E., Kloetzel P. M., Neefjes J., Koszinowski U., Melief C. 1996; A single residue exchange within a viral CTL epitope alters proteasome-mediated degradation resulting in lack of antigen presentation. Immunity 5:115–124
    [Google Scholar]
  24. Parker K. C., Bednarek M. A., Coligan J. E. 1994; Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. Journal of Immunology 152:163–175
    [Google Scholar]
  25. Rammensee H. G., Bachmann J., Stevanovic S. 1997 MHC Ligands and Peptide Motifs Austin, TX, USA: Landes Bioscience;
    [Google Scholar]
  26. Reis e Sousa C., Germain R. N. 1995; Major histocompatibility complex class I presentation of peptides derived from soluble exogenous antigen by a subset of cells engaged in phagocytosis. Journal of Experimental Medicine 182:841–851
    [Google Scholar]
  27. Roelse J., Grommé M., Momburg F., Hammerling G., Neefjes J. 1994; Trimming of TAP-translocated peptides in the endoplasmic reticulum and in the cytosol during recycling. Journal of Experimental Medicine 180:1591–1597
    [Google Scholar]
  28. Schubert U., Anton L. C., Gibbs J., Norbury C. C., Yewdell J. W., Bennink J. R. 2000; Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–774
    [Google Scholar]
  29. Shi Y., Smith K. D., Kurilla M. G., Lutz C. T. 1997; Cytotoxic CD8+ T cells recognize EBV antigen but poorly kill autologous EBV-infected B lymphoblasts: immunodominance is elicited by a peptide epitope that is presented at low levels in vitro. Journal of Immunology 159:1844–1852
    [Google Scholar]
  30. Snyder H. L., Yewdell J. W., Bennink J. R. 1994; Trimming of antigenic peptides in an early secretory compartment. Journal of Experimental Medicine 180:2389–2394
    [Google Scholar]
  31. Snyder H. L., Bacik I., Yewdell J. W., Behrens T. W., Bennink J. R. 1998; Promiscuous liberation of MHC-class I-binding peptides from the C termini of membrane and soluble proteins in the secretory pathway. European Journal of Immunology 28:1339–1346
    [Google Scholar]
  32. Stoltze L., Schirle M., Schwartz M., Schroter C., Thompson M. W., Hersch L. B., Kalbacher H., Stevanovic S., Rammensee H. G., Schild H. 2000; Two new proteases in the MHC class I processing pathway. Nature Immunology 1:413–418
    [Google Scholar]
  33. Traversari C., van der Bruggen P., van den Eynde B., Hainaut P., Lemoine C., Ohta N., Old L., Boon T. 1992; Transfection and expression of a gene coding for a human melanoma antigen recognized by autologous cytolytic T lymphocytes. Immunogenetics 35:145–152
    [Google Scholar]
  34. Tsai S. L., Chen M. H., Yeh C. T., Chu C. M., Lin A. N., Chiou F. H., Chang T. H., Liaw Y. F. 1996; Purification and characterization of a naturally processed hepatitis B virus peptide recognized by CD8+ cytotoxic T lymphocytes. Journal of Clinical Investigation 97:577–584
    [Google Scholar]
  35. Tsomides T. J., Aldovini A., Johnson R. P., Walker B. D., Young R. A., Eisen H. N. 1994; Naturally processed viral peptides recognized by cytotoxic T lymphocytes on cells chronically infected by human immunodeficiency virus type 1. Journal of Experimental Medicine 180:1283–1293
    [Google Scholar]
  36. Urban R. G., Chicz R. M., Lane W. S., Strominger J. L., Rehm A., Kenter M. J., UytdeHaag F. G., Ploegh H., Uchanska Z. B., Ziegler A. 1994; A subset of HLA-B27 molecules contains peptides much longer than nonamers. Proceedings of the National Academy of Sciences, USA 91:1534–1538
    [Google Scholar]
  37. van Binnendijk R. S., van Baalen C. A., Poelen M. C., de Vries P., Boes J., Cerundolo V., Osterhaus A. D., UytdeHaag F. G. 1992; Measles virus transmembrane fusion protein synthesized de novo or presented in immunostimulating complexes is endogenously processed for HLA class I- and class II-restricted cytotoxic T cell recognition. Journal of Experimental Medicine 176:119–128
    [Google Scholar]
  38. van der Heeft E., ten Hove G. J., Herberts C. A., Meiring H. D., van Els C. A., de Jong A. P. 1998; A microcapillary column switching HPLC-electrospray ionization MS system for the direct identification of peptides presented by major histocompatibility complex class I molecules. Analytical Chemistry 70:3742–3751
    [Google Scholar]
  39. van Els C. A., Herberts C. A., van Der H. E., Poelen M. C., Gaans-Van Den Brink J. A., van der Kooi A., Hoogerhout P., ten Hove G. J., Meiring H. D., de Jong A. P. 2000; A single naturally processed measles virus peptide fully dominates the HLA-A*0201-associated peptide display and is mutated at its anchor position in persistent viral strains. European Journal of Immunology 30:1172–1181
    [Google Scholar]
  40. Ward C. L., Omura S., Kopito R. R. 1995; Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83:121–127
    [Google Scholar]
  41. Wiertz E. J., Jones T. R., Sun L., Bogyo M., Geuze H. J., Ploegh H. L. 1996; The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84:769–779
    [Google Scholar]
  42. Zinkernagel R. M., Doherty P. C. 1979; MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Advances in Immunology 27:51–177
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-9-2131
Loading
/content/journal/jgv/10.1099/0022-1317-82-9-2131
Loading

Data & Media loading...

Most cited Most Cited RSS feed