1887

Abstract

The baculovirus multiple nucleopolyhedrosis virus causes non-productive infection in mammalian cells. Recombinant baculovirus therefore has the capability to transfer and express heterologous genes in these cells if a mammalian promoter governs the gene of interest. We have investigated the possibility of using baculovirus as a tool to produce recombinant adeno-associated virus (rAAV). AAV has become increasingly popular as a vector for gene therapy and functional genomics efforts, although its use is hampered by the lack of a simple and efficient vector production method. We show here that co-infection of mammalian producer cells with three viruses – a baculovirus containing the reporter gene flanked by AAV ITRs, a baculovirus expressing the AAV gene and a helper adenovirus expressing the AAV gene – produces infectious rAAV particles. This baculovirus-based chimeric vector method may in future improve large-scale rAAV vector preparations and circumvent present-day problems associated with rAAV production.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-9-2051
2001-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/9/0822051a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-9-2051&mimeType=html&fmt=ahah

References

  1. Alexander I. E., Russel D. W., Miller A. D. 1997; Transfer of contaminants in adeno-associated virus vector stocks can mimic transduction and lead to artifactual results. Human Gene Therapy 8:1911–1920
    [Google Scholar]
  2. Allen J. M., Halbert C. L., Miller A. D. 2000; Improved adeno-associated virus vector production with transfection of a single helper adenovirus gene, E4orf6. Molecular Therapy 1:88–95
    [Google Scholar]
  3. Berns K. I. 1996; Parvoviridae : the viruses and their replication. In Virology pp 2173–2197 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  4. Berns K. I., Linden R. M. 1995; The cryptic life style of adeno-associated virus. Bioessays 17:237–245
    [Google Scholar]
  5. Chejanovsky N., Carter B. J. 1989; Replication of a human parvovirus nonsense mutant in mammalian cells containing an inducible amber suppressor. Virology 171:239–247
    [Google Scholar]
  6. Crouzet J., Naudin L., Orsini C., Vigne E., Ferrero L., Le Roux A., Benoit P., Latta M., Torrent C., Branellec D., Denefle P., Mayaux J. F., Perricaudet M., Yeh P. 1997; Recombinational construction in Escherichia coli of infectious adenoviral genomes. Proceedings of the National Academy of Sciences, USA 94:1414–1419
    [Google Scholar]
  7. Drittanti L., Jenny C., Poulard K., Samba A., Manceau P., Soria N., Vincent N., Danos O., Vega M. 2001; Optimised helper virus-free production of high-quality adeno-associated virus vectors. Journal of Gene Medicine 3:59–71
    [Google Scholar]
  8. Fisher K. J., Gao G-P., Weitzman M. D., DeMatteo R., Burda J. F., Wilson J. M. 1996; Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. Journal of Virology 70:520–532
    [Google Scholar]
  9. Flotte T. R., Afione S. A., Conrad C., McGrath S. A., Solow R., Oka H., Zeitlin P. L., Guggino W. B., Carter B. J. 1993; Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proceedings of the National Academy of Sciences, USA 90:10613–10617
    [Google Scholar]
  10. Flotte T. R., Barraza-Ortiz X., Solow R., Afione S. A., Carter B. J., Guggino W. B. 1995; An improved system for packaging recombinant adeno-associated virus vectors capable of in vivo transduction. Gene Therapy 2:29–37
    [Google Scholar]
  11. Grimm D., Kern A., Rittner K., Kleinschmidt J. A. 1998; Novel tools for production and purification of recombinant adenoassociated virus vectors. Human Gene Therapy 9:2745–2760
    [Google Scholar]
  12. Hayat M. A. 1989 Principles and Techniques of Electron Microscopy, 3rd edn. Boca Raton, FL: CRC Press;
  13. Hofmann C., Strauss M. 1998; Baculovirus-mediated gene transfer in the presence of human serum or blood facilitated by inhibition of the complement system. Gene Therapy 5:531–536
    [Google Scholar]
  14. Hofmann C., Sandig V., Jennings G., Rudolph M., Schlag P., Strauss M. 1995; Efficient gene transfer into human hepatocytes by baculovirus vectors. Proceedings of the National Academy of Sciences, USA 92:10099–10103
    [Google Scholar]
  15. Kaplitt M. G., Leone P., Samulski R. J., Xiao X., Pfaff D. W., O’Malley K. L., During M. J. 1994; Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nature Genetics 8:148–154
    [Google Scholar]
  16. Li J., Samulski R. J., Xiao X. 1997; Role for highly regulated rep gene expression in adeno-associated virus vector production. Journal of Virology 71:5236–5243
    [Google Scholar]
  17. Ogasawara Y., Urabe M., Ozawa K. 1998; The use of heterologous promoters for adeno-associated virus (AAV) protein expression in AAV vector production. Microbiology and Immunology 42:177–185
    [Google Scholar]
  18. O’Reilly D. R., Miller L. K., Luckow V. A. 1994 Baculovirus Expression Vectors: A Laboratory Manual New York: Oxford University Press;
  19. Palombo F., Monciotti A., Recchia A., Cortese R., Ciliberto G., La Monica N. 1998; Site-specific integration in mammalian cells mediated by a new hybrid baculovirus–adeno-associated virus vector. Journal of Virology 72:5025–5034
    [Google Scholar]
  20. Samulski R. J., Chang L. S., Shenk T. 1987; A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. Journal of Virology 61:3096–3101
    [Google Scholar]
  21. Samulski R. J., Chang L. S., Shenk T. 1989; Helper-free stock of recombinant adeno-associated viruses: normal integration does not require viral gene expression. Journal of Virology 63:3822–3828
    [Google Scholar]
  22. Snyder R. O., Miao C. H., Patijn G. A., Spratt S. K., Danos O., Nagy D., Gown A. M., Winther B., Meuse L., Cohen L. K., Thompson A. R., Kay M. A. 1997; Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nature Genetics 16:270–276
    [Google Scholar]
  23. Snyder R. O., Miao C., Meuse L., Tubb J., Donahue B. A., Lin H. F., Stafford D. W., Patel S., Thompson A. R., Nichols T., Read M. S., Bellinger D. A., Brinkhous K. M., Kay M. A. 1999; Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors. Nature Medicine 5:64–70
    [Google Scholar]
  24. Xiao X., Samulski R. J. 1996; Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. Journal of Virology 70:8090–8108
    [Google Scholar]
  25. Xiao X., Li J., Samulski R. J. 1998; Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. Journal of Virology 72:2224–2232
    [Google Scholar]
  26. Xiao X., Li J., McCown T. J., Samulski R. J. 1997; Gene transfer by adeno-associated virus vectors into the central nervous system. Experimental Neurology 144:113–124
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-9-2051
Loading
/content/journal/jgv/10.1099/0022-1317-82-9-2051
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error