1887

Abstract

(BWYV), family , is an icosahedral plant virus which is strictly transmitted by aphids in a persistent and circulative manner. Virions cross two cellular barriers in the aphid by receptor-based mechanisms involving endocytosis and exocytosis. Particles are first transported across intestinal cells into the haemolymph and then across accessory salivary gland cells for delivery to the plant via saliva. We identified the midgut part of the digestive tract as the site of intestinal passage by BWYV virions. To analyse the role in transmission of the minor capsid component, the readthrough (RT) protein, the fate of a BWYV RT-deficient non-transmissible mutant was followed by transmission electron microscopy in the vector . This mutant was observed in the gut lumen but was never found inside midgut cells. However, virion aggregates were detected in the basal lamina of midgut cells when BWYV antiserum was microinjected into the haemolymph. The presence of virions in the haemolymph was confirmed by a sensitive molecular technique for detecting viral RNA. Thus, transport of the mutant virions through intestinal cells occurred but at a low frequency. Even when microinjected into the haemolymph, the RT protein mutant was never detected near or in the accessory salivary gland cells. We conclude that the RT protein is not strictly required for the transport of virus particles through midgut cells, but is necessary for the maintenance of virions in the haemolymph and their passage through accessory salivary gland cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-8-1995
2001-08-01
2020-07-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/8/0821995a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-8-1995&mimeType=html&fmt=ahah

References

  1. Ammar E. D.. 1991; Mechanisms of plant virus transmission by Homopteran insects. In Electron Microscopy of Plant Pathogens pp133–146 Edited by Mendgen K., Lesemann D. E.. Berlin: Springer Verlag;
    [Google Scholar]
  2. Brault V., van den Heuvel J. F. J. M., Verbeek M., Ziegler-Graff V., Reutenauer A., Herrbach E., Garaud J. C., Guilley H., Richards K., Jonard G.. 1995; Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. EMBO Journal14:650–659
    [Google Scholar]
  3. Brault V., Mutterer J. D., Scheidecker D., Simonis M. T., Herrbach E., Richards K., Ziegler-Graff V.. 2000; Effects of point mutations in the readthrough domain of beet western yellows virus minor capsid protein on virus accumulation in planta and on transmission by aphids. Journal of Virology74:1140–1148
    [Google Scholar]
  4. Bruyère A., Brault V., Ziegler-Graff V., Simonis M. T., van den Heuvel J. F. J. M., Richards K., Guilley H., Jonard G., Herrbach E.. 1997; Effects of mutations in the beet western yellows virus readthrough protein on its expression and packaging and on virus accumulation, symptoms, and aphid transmission. Virology230:323–334
    [Google Scholar]
  5. Chay C. A., Gunasinghe U. B., Dinesh-Kumar S. P., Miller W. A., Gray S. M.. 1996; Aphid transmission and systemic plant infection determinants of barley yellow dwarf luteovirus-PAV are contained in the coat protein readthrough domain and 17 kDa protein, respectively. Virology219:57–65
    [Google Scholar]
  6. Clark M. F., Adams A. N.. 1977; Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology34:475–483
    [Google Scholar]
  7. Eun A. J. C., Wong S.. 2000; Molecular beacons: a new approach to plant virus detection. Phytopathology90:269–275
    [Google Scholar]
  8. Forbes A. R.. 1964; The morphology, histology, and fine structure of the gut of the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae). Memoirs of the Entomological Society of Canada36:1–74
    [Google Scholar]
  9. Fu H., Leake C. J., Mertens P. P. C., Mellor P. S.. 1999; The barriers to bluetongue virus infection, dissemination and transmission in the vector, Culicoides variipennis (Diptera: Ceratopogonidae). Archives of Virology144:747–761
    [Google Scholar]
  10. Garret A., Kerlan C., Thomas D.. 1993; The intestine is a site of passage for potato leafroll virus from the gut lumen to the haemocoel in the aphid vector, Myzus persicae Sulz. Archives of Virology131:377–392
    [Google Scholar]
  11. Gildow F. E.. 1982; Coated vesicle transport of luteovirus through the salivary gland of Myzus persicae. Phytopathology72:1289–1296
    [Google Scholar]
  12. Gildow F. E.. 1987; Virus–membrane interactions involved in circulative transmission of luteoviruses by aphids. Current Topics in Vector Research4:93–120
    [Google Scholar]
  13. Gildow F. E.. 1993; Evidence for receptor-mediated endocytosis regulating luteovirus acquisition by aphids. Phytopathology83:270–277
    [Google Scholar]
  14. Gildow F. E.. 1999; Luteovirus transmission and mechanisms regulating vector specificity. In The Luteoviridae pp88–113 Edited by Smith H. G., Barker H.. Oxford: CAB International;
    [Google Scholar]
  15. Gildow F. E., Gray S.. 1993; The aphid salivary gland basal lamina as a selective barrier associated with vector-specific transmission of barley yellow dwarf luteovirus. Phytopathology83:1293–1302
    [Google Scholar]
  16. Gildow F. E., Damsteegt V. D., Stone A. L., Smith O. P., Gray S. M.. 2000a; Virus–vector cell interactions regulating transmission specificity of soybean dwarf luteoviruses. Journal of Phytopathology148:333–342
    [Google Scholar]
  17. Gildow F. E., Reavy B., Mayo M. A., Duncan G. H., Woodford J. A. T., Lamb J. W., Hay R. T.. 2000b; Aphid acquisition and cellular transport of potato leafroll virus-like particles lacking P5 readthrough protein. Phytopathology90:1153–1161
    [Google Scholar]
  18. Harrewijn P.. 1983; The effect of cultural measures on behaviour and population development of potato aphids and transmission of viruses. Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 48, 791-799
    [Google Scholar]
  19. Harris K. F., Bath J. E.. 1972; The fate of pea enation mosaic virus in its pea aphid vector, Acyrthosiphon pisum (Harris). Virology50:778–790
    [Google Scholar]
  20. Hunter W. B., Hiebert E., Webb S. E., Tsai J. H., Polston J. E.. 1998; Location of geminiviruses in the whitefly Bemisia tabaci (Homoptera: Aleyrodidae). Plant Disease82:1147–1151
    [Google Scholar]
  21. Kieviets T., van Gemen B., van Strijp D., Schukkink R., Dircks M., Adriaanse H., Malek L., Sooknanan R., Lens P.. 1991; NASBATM isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. Journal of Virological Methods35:273–286
    [Google Scholar]
  22. Leake C. J.. 1992; Arbovirus–mosquito interactions and vector specificity. Parasitology Today8:123–128
    [Google Scholar]
  23. Leone G., van Schijndel H. B., van Gemen B., Kramer F. R., Schoen C. D.. 1998; Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA. Nucleic Acids Research26:2150–2155
    [Google Scholar]
  24. Mayo M. A., D’Arcy C. J.. 1999; Family Luteoviridae : a reclassification of luteoviruses. In The Luteoviridae pp15–22 Edited by Smith H. G., Barker H.. Oxford: CAB International;
    [Google Scholar]
  25. Mellor P. S.. 2000; Replication of arboviruses in insect vectors. Journal of Comparative Pathology123:231–247
    [Google Scholar]
  26. Nemerow G. R.. 2000; Cell receptors involved in adenovirus entry. Virology274:1–4
    [Google Scholar]
  27. Peiffer M. L., Gildow F. E., Gray S. M.. 1997; Two distinct mechanisms regulate luteovirus transmission efficiency and specificity at the aphid salivary gland. Journal of General Virology78:495–509
    [Google Scholar]
  28. Reutenauer A., Ziegler-Graff V., Lot H., Scheidecker D., Guilley H., Richards K., Jonard G.. 1993; Identification of beet western yellows luteovirus genes implicated in viral replication and particle morphogenesis. Virology195:692–699
    [Google Scholar]
  29. Rochow W. F.. 1969; Specificity in aphid transmission of a circulative plant virus. In Viruses, Vectors, and Vegetation pp175–198 Edited by Maramorosch K.. New York: Interscience;
    [Google Scholar]
  30. Rouzé-Jouan J., Terradot L., Pasquer F., Tanguy S., Giblot Ducray-Bourdin D.. 2001; The passage of Potato leafroll virus through Myzus persicae gut membrane regulates transmission efficiency. Journal of General Virology82:17–23
    [Google Scholar]
  31. Tyagi S., Kramer F. R.. 1996; Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnology14:303–308
    [Google Scholar]
  32. Ullman D. E., Cho J. J., Mau R. F. L., Westcot D. M., Custer D. M.. 1992; A midgut barrier to tomato spotted wilt virus acquisition by adult western flower thrips. Phytopathology82:1333–1342
    [Google Scholar]
  33. van den Heuvel J. F. J. M.. 1999; Fate of a luteovirus in the haemolymph of an aphid. In The Luteoviridae pp112–119 Edited by Smith H. G., Barker H. Oxford: CAB International;
    [Google Scholar]
  34. van den Heuvel J. F. J. M., Boerma T. M., Peters D.. 1991; Transmission of potato leafroll virus from plants and artificial diets by Myzus persicae. Phytopathology81150–154
    [Google Scholar]
  35. van den Heuvel J. F. J. M., Verbeek M., van der Wilk F.. 1994; Endosymbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae. Journal of General Virology75:2559–2565
    [Google Scholar]
  36. van den Heuvel J. F. J. M., Bruyère A., Hogenhout S. A., Ziegler-Graff V., Brault V., Verbeek M., van der Wilk F., Richards K.. 1997; The N-terminal region of the luteovirus readthrough domain determines virus binding to Buchnera GroEL and is essential for virus persistence in the aphid. Journal of Virology71:7258–7265
    [Google Scholar]
  37. van den Heuvel J. F. J. M., Hogenhout S. A., van der Wilk F.. 1999; Recognition and receptors in virus transmission by arthropods. Trends in Microbiology7:71–76
    [Google Scholar]
  38. Veidt I., Bouzoubaa S. E., Ziegler-Graff V., Leiser R. M., Guilley H., Jonard G., Richards K.. 1992; Synthesis of full-length transcripts of beet western yellows virus RNA: messenger properties and biological activity in protoplasts. Virology186:192–200
    [Google Scholar]
  39. Wang R. Y., Gergerich R. C., Kim K. S.. 1994; Entry of ingested plant viruses into the hemocoel of the beetle vector Diabrotica undecimpunctata howardi. Phytopathology84:147–153
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-8-1995
Loading
/content/journal/jgv/10.1099/0022-1317-82-8-1995
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error