1887

Abstract

Heparan sulfate (HS) has been identified as a receptor molecule for numerous microbial pathogens, including herpes simplex virus type 1 (HSV-1). To further define the major HS-binding domain of the HSV-1 attachment protein, i.e. glycoprotein C (gC), virus mutants carrying alterations of either two neighbouring basic amino acid residues or a single hydrophobic amino acid residue within the N-terminal domain of the protein (residues 26–227) were constructed. In addition, a mutant lacking the Asn148 glycosylation site was included in the study. Binding of purified mutated gC proteins to isolated HS chains showed that viruses with mutations at residues Arg(129,130), Ile142, Arg(143,145), Arg(145,147), Arg(151,155) and Arg(155,160) had significantly impaired HS binding, in contrast to the other mutations, including Asn148. Impairment of the HS-binding activity of gC by these mutations had profound consequences for virus attachment and infection of cells in which amounts of HS exposed on the cell surface had been reduced. It is suggested that basic and hydrophobic residues localized at the Cys127–Cys144 loop of HSV-1 gC constitute a major HS-binding domain, with the most active amino acids situated near the C-terminal region of the two cysteines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-82-8-1941
2001-08-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/82/8/0821941a.html?itemId=/content/journal/jgv/10.1099/0022-1317-82-8-1941&mimeType=html&fmt=ahah

References

  1. Bergström T., Sjögren-Jansson E., Jeansson S., Lycke E. 1992; Mapping neuroinvasiveness of the herpes simplex virus type 1 encephalitis-inducing strain 2762 by the use of monoclonal antibodies. Molecular and Cellular Probes 6:41–49
    [Google Scholar]
  2. Cocchi F., Menotti L., Mirandola P., Lopez M., Campadelli-Fiume G. 1998; The ectodomain of a novel member of the immunoglobulin subfamily related to the poliovirus receptor has the attributes of a bona fide receptor for herpes simplex virus types 1 and 2 in human cells. Journal of Virology 72:9992–10002
    [Google Scholar]
  3. Drzeniek Z., Stöcker G., Siebertz B., Just U., Schroeder T., Ostertag W., Haubeck H.-D. 1999; Heparan sulfate proteoglycan expression is induced during early erythroid differentiation of multipotent hematopoietic stem cells. Blood 93:2884–2897
    [Google Scholar]
  4. Feyzi E., Trybala E., Bergström T., Lindahl U., Spillmann D. 1997; Structural requirement of heparan sulfate for interaction with herpes simplex virus type 1 virions and isolated glycoprotein C. Journal of Biological Chemistry 272:24850–24857
    [Google Scholar]
  5. Fitzpatrick D. R., Babiuk L. A., Zamb T. J. 1989; Nucleotide sequence of bovine herpesvirus type 1 glycoprotein gIII, a structural model for gIII as a new member of the immunoglobulin superfamily, and implications for the homologous glycoproteins of other herpesviruses. Virology 173:46–57
    [Google Scholar]
  6. Flynn S. J., Ryan P. 1996; The receptor-binding domain of pseudorabies virus glycoprotein gC is composed of multiple discrete units that are functionally redundant. Journal of Virology 70:1355–1364
    [Google Scholar]
  7. Fuller A. O., Spear P. G. 1985; Specificities of monoclonal and polyclonal antibodies that inhibit adsorption of herpes simplex virus to cells and lack of inhibition by potent neutralizing antibodies. Journal of Virology 55:475–482
    [Google Scholar]
  8. Gallagher J. T. 1995; Heparan sulphate and protein recognition. Binding specificities and activation mechanisms. Advances in Experimental Medicine and Biology 376:125–134
    [Google Scholar]
  9. Geraghty R. J., Krummenacher C., Cohen G. H., Eisenberg R. J., Spear P. G. 1998; Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 280:1618–1620
    [Google Scholar]
  10. Gerber S. I., Beval B. J., Herold B. C. 1995; Differences in the role of glycoprotein C of HSV-1 and HSV-2 in viral binding may contribute to serotype differences in cell tropism. Virology 214:29–39
    [Google Scholar]
  11. Graham F. L., van der Eb A. J. 1973; A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467
    [Google Scholar]
  12. Herold B. C., WuDunn D., Soltys N., Spear P. G. 1991; Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. Journal of Virology 65:1090–1098
    [Google Scholar]
  13. Herold B. C., Visalli R. J., Susmarski N., Brandt C. R., Spear P. G. 1994; Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B. Journal of General Virology 75:1211–1222
    [Google Scholar]
  14. Hileman R. E., Fromm J. R., Weiler J. M., Linhardt R. J. 1998; Glycosaminoglycan–protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. Bioessays 20:156–167
    [Google Scholar]
  15. Holland T. C., Marlin S. D., Levine M., Glorioso J. 1983; Antigenic variants of herpes simplex virus selected with glycoprotein-specific monoclonal antibodies. Journal of Virology 45:672–682
    [Google Scholar]
  16. Holland T. C., Homa F. L., Marlin S. D., Levine M., Glorioso J. 1984; Herpes simplex virus type 1 glycoprotein C-negative mutants exhibit multiple phenotypes, including secretion of truncated glycoproteins. Journal of Virology 52:566–574
    [Google Scholar]
  17. Homa F. L., Purifoy D. J. M., Glorioso J. C., Levine M. 1986; Molecular basis of the glycoprotein C-negative phenotypes of herpes simplex virus type 1 mutants selected with a virus-neutralizing monoclonal antibody. Journal of Virology 58:281–289
    [Google Scholar]
  18. Immergluck L. C., Domowicz M. S., Schwartz N. B., Herold B. C. 1998; Viral and cellular requirements for entry of herpes simplex virus type 1 into primary neuronal cells. Journal of General Virology 79:549–559
    [Google Scholar]
  19. Karger A., Saalmuller A., Tufaro F., Banfield B. W., Mettenleiter T. C. 1995; Cell surface proteoglycans are not essential for infection by pseudorabies virus. Journal of Virology 69:3482–3489
    [Google Scholar]
  20. Laquerre S., Argnani R., Anderson D. B., Zucchini S., Manservigi R., Glorioso J. C. 1998; Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. Journal of Virology 72:6119–6130
    [Google Scholar]
  21. Lind T., Tufaro F., McCormick C., Lindahl U., Lidholt K. 1998; The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. Journal of Biological Chemistry 273:26265–26268
    [Google Scholar]
  22. Lyon M., Deakin J. A., Mizuno K., Nakamura T., Gallagher J. T. 1994; Interaction of hepatocyte growth factor with heparan sulfate. Elucidation of the major heparan sulfate structural determinants. Journal of Biological Chemistry 269:11216–11223
    [Google Scholar]
  23. Maccarana M., Casu B., Lindahl U. 1993; Minimal sequence of heparin/heparan sulfate required for binding of basic fibroblast growth factor. Journal of Biological Chemistry 268:23898–23905
    [Google Scholar]
  24. McCormick C., Leduc Y., Martindale D., Mattison K., Esford L. E., Dyer A. P., Tufaro F. 1998; The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nature Genetics 19:158–161
    [Google Scholar]
  25. Maniatis T. E., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  26. Marlin S. D., Holland T. C., Levine M., Glorioso J. C. 1985; Epitopes of herpes simplex virus type 1 glycoprotein gC are clustered in two distinct antigenic sites. Journal of Virology 53:128–136
    [Google Scholar]
  27. Mettenleiter T. C., Zsak L., Zuckermann F., Sugg N., Kern H., Ben-Porat T. 1990; Interaction of glycoprotein gIII with a cellular heparinlike substance mediates adsoption of pseudorabies virus. Journal of Virology 64:278–286
    [Google Scholar]
  28. Okazaki K., Mitsuzaki T., Sugahara Y., Okada J., Hasebe M., Iwamura Y., Ohnishi M., Kanno T., Shimizu M., Honda E., Kono Y. 1991; BHV-1 adsorption is mediated by the interaction of glycoprotein gIII with heparin-like moiety on the cell surface. Virology 181:666–670
    [Google Scholar]
  29. Olofsson S., Bolmstedt A., Biller M., Mårdberg K., Leckner J., Malmström B. G., Trybala E., Bergström T. 1999; The role of a single N-linked glycosylation site for a functional epitope of herpes simplex virus type 1 envelope glycoprotein gC. Glycobiology 9:73–81
    [Google Scholar]
  30. Rux A. H., Moore W. T., Lambris J. D., Abrams W. R., Peng C., Friedman H. M., Cohen G. H., Eisenberg R. J. 1996; Disulfide bond structure determination and biochemical analysis of glycoprotein C from herpes simplex virus. Journal of Virology 70:5455–5465
    [Google Scholar]
  31. Salmivirta M., Lidholt K., Lindahl U. 1996; Heparan sulfate: a piece of information. FASEB Journal 10:1270–1279
    [Google Scholar]
  32. Shukla D., Liu J., Blaiklock P., Shworak N. W., Bai X., Esko J. D., Cohen G. H., Eisenberg R. J., Rosenberg R. D., Spear P. G. 1999; A novel role for 3- O -sulfated heparan sulfate in herpes simplex 1 entry. Cell 99:13–22
    [Google Scholar]
  33. Spear P. G. 1993; Entry of alphaherpesviruses into cells. Seminars in Virology 4:167–180
    [Google Scholar]
  34. Spillmann D., Lindahl U. 1994; Glycosaminoglycan–protein interactions: a question of specificity. Current Opinion in Structural Biology 4:677–682
    [Google Scholar]
  35. Svennerholm B., Jeansson S., Vahlne A., Lycke E. 1991; Involvement of glycoprotein C (gC) in adsorption of herpes simplex virus type 1 (HSV-1) to the cell. Archives of Virology 120:273–279
    [Google Scholar]
  36. Tal-Singer R., Peng C., Ponce de Leon M., Abrams W. R., Banfield B. W., Tufaro F., Cohen G. H., Eisenberg R. J. 1995; Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules. Journal of Virology 69:4471–4483
    [Google Scholar]
  37. Thompson L. D., Pantoliano M. W., Springer B. A. 1994; Energetic characterization of the basic fibroblast growth factor–heparin interaction: identification of the heparin binding domain. Biochemistry 33:3831–3840
    [Google Scholar]
  38. Trybala E., Svennerholm B., Bergström T., Olofsson S., Jeansson S., Goodman J. L. 1993; Herpes simplex virus type 1-induced hemagglutination: glycoprotein C mediates virus binding to erythrocyte surface heparan sulfate. Journal of Virology 67:1278–1285
    [Google Scholar]
  39. Trybala E., Bergström T., Svennerholm B., Jeansson S., Glorioso J. C., Olofsson S. 1994; Localization of a functional site of herpes simplex virus type 1 glycoprotein C involved in binding to cell surface heparan sulphate. Journal of General Virology 75:743–752
    [Google Scholar]
  40. Trybala E., Bergström T., Spillmann D., Svennerholm B., Flynn S., Ryan P. 1998; Interaction between pseudorabies virus and heparin/heparan sulfate. Journal of Biological Chemistry 273:5047–5052
    [Google Scholar]
  41. van Kuppevelt T., Dennissen H. M., van Venrooij W. J., Hoet R., Veerkamp J. H. 1998; Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology. Journal of Biological Chemistry 273:12960–12966
    [Google Scholar]
  42. Wu C.-T. B., Levine M., Homa F., Highlander S. L., Glorioso J. C. 1990; Characterization of the antigenic structure of herpes simplex virus type 1 glycoprotein C through DNA sequence analysis of monoclonal antibody-resistant mutants. Journal of Virology 64:856–863
    [Google Scholar]
  43. WuDunn D., Spear P. G. 1989; Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. Journal of Virology 63:52–58
    [Google Scholar]
  44. Zhu Z., Gerson M. D., Ambron R., Gabel C. H., Gerson A. A. 1995; Infection of cells by varicella zoster virus: inhibition of viral entry by mannose 6-phosphate and heparin. Proceedings of the National Academy of Sciences, USA 92:3546–3550
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-82-8-1941
Loading
/content/journal/jgv/10.1099/0022-1317-82-8-1941
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error